
15440 - Fall 2017

Project 2

Synchronization & Replication in

FileStack

Out: October 04, 2017

Due: October 21, 2017

15440 - Fall 2017

1

Contents

1 Learning Objective 3

2 Project Objective 3

3 Conceptual Architecture 4
3.1 System Description . 5
3.2 Consistency . 5

3.2.1 Reader Operation . 5
3.2.2 Writer Operation . 6
3.2.3 Locking a File/Directory in the Hierarchy of the Path . . 6

3.3 Replication . 7
3.3.1 Replication Policy . 7
3.3.2 Read-request Handling for Hot-�les 8
3.3.3 Write-request Handling for Hot-�les 8

4 Design and Implementation Guidelines 9
4.1 File Concurrency and Synchronization 9
4.2 Replication . 9

5 Design and Implementation Guidelines 10

6 Test Suite 10

7 Q&A 11

8 Deliverable 11

9 Submission 11

10 Late Policy 11

2

1 Learning Objective

Project 2 applies the theory of two important aspects of distributed systems:
synchronization and replication. The learning objective of this project is two-
fold:

1. Examine and apply synchronization algorithms that enable correct and
consistent sharing of common resources.

2. Apply intelligent replication strategies for load-balancing and performance.

2 Project Objective

FileStack (Project 1) was described as a distributed �le system which allows
clients to read or write �les on remote storage servers. Two important aspects
of such �le systems are to:

1. Ensure correctness when multiple clients read/write: this problem
is known as maintaining "consistency." You will now maintain locks for
reader and writer clients. Since reads do not change the �le, you can allow
as many readers as possible to access the �le at the same time. However,
if a writer has to write to a �le, you have to ensure that there are no other
readers or writers who have locked the �le. This concept is referred to as
read-write locks. In addition to ensuring basic consistency, you will also
solve the unfairness problem that manifests while ensuring consistency.

2. Improve performance by smart-allocation of �les across multiple
servers: we solve this problem by dynamic replication of �les. Instead of
all clients fetching a �le from one storage server, we can now parallelize
- and hence improve read/write times - by redirecting clients to di�erent
replicas. It also aids in load-balancing of storage servers: many clients
who access a very popular �le will now not go to a single storage server.

3

3 Conceptual Architecture

Figure 1: Architecture of FileStack (Project 1)

The conceptual architecture of the FileStack system, shown in Figure 1,
remains the same as that of project 1:

1. The Clients will contact the naming server to access �les.

2. The Naming Server will redirect the clients towards Storage Servers.

3. The Clients will read/write �les on Storage Servers.

However, in this project, you will: (1) make sure that the �les are consistent,
and (2) implement a replication policy.

4

3.1 System Description

In this section, we describe the functionalities that you will implement and the
nature of the protocol to ensure consistency and reliability. You will implement
two main functionalities: consistency and replication.

3.2 Consistency

You will implement a scheme to ensure consistency in distributed systems called
"read-write locks." The main concept is for reader and writer clients to grab
locks before performing operations, and release them once these operations are
done. If some other client already owns a lock, this means that the �le is cur-
rently being accessed by that client. In such a case, it is possible for the �le to
become inconsistent if more than one client accesses the �le at the same time.
For example, if one writer is modifying a part of a �le, and another writer mod-
i�es an overlapping part, then the �le becomes inconsistent. The goal in this
project is to avert the occurrence of such a scenario (and alike) via ensuring
consistency when multiple clients are present. You will implement and design
algorithms that achieve that goal.

In particular, you will implement coarse-grained locks (similar to Google
Chubby). Here, the user will ask for an exclusive lock or a non-exclusive
lock from the naming server for proceeding with a write or a read, respectively.
As such, you have to provision two more methods in the Naming Server (in the
Service interface).

3.2.1 Reader Operation

A reader will grab a non-exclusive lock to a �le before reading, and will release
the lock once it is done. While one reader is reading the �le, you will allow other
readers to concurrently read the �le (i.e., other readers will also be able to grab
non-exclusive lock to the �le). This is because read operations do not modify
�les, and hence, cannot cause inconsistencies. Nonetheless, simultaneous reads
to a �le can decrease the time taken for reading the �le by multiple readers (as
readers do not wait for each other), and accordingly, improving performance.

5

3.2.2 Writer Operation

A writer will grab an exclusive lock to a �le before writing, and will release
the lock once the operation is completed. In order to keep the �le consistent, a
writer can successfully grab the lock only when:

1. None of the readers are reading, or

2. None of the other writers are writing.

3.2.3 Locking a File/Directory in the Hierarchy of the Path

Consider writing to a �le in the absolute path /home/users/student1/work/project2.txt.
While obtaining a write lock to the �le, you have to make sure that:

1. No other reader or writer is operating on �le project2.txt

2. No writer is modifying the hierarchy of directory. For example, consider
a scenario where client 1 is trying to rename sub-directory "work" to
"play," and client 2 is writing to project2.txt. Then client 2 should
write - after client 1 is �nished - to the new location /home/users/stu-
dent1/play/project2.txt (and not to /home/users/student1/work/project2.txt).
The likelihood of inconsistencies in DFSs renders increasingly high if whole
directory paths are not locked. You will avoid inconsistencies in your
FileStack system by:

(a) Obtaining non-exclusive locks to all the directories in a given path,
and

(b) Obtaining an exclusive lock for the �le to be altered (e.g., in the
aboveexample).

Such a strategy will ensure that writers do not introduce inconsistencies in
your �le system. For readers, you will also follow almost the same strategy: you
will lock all the directories and the �le in the path by using non-exclusive locks.
By applying this approach, you will not allow any writer (similar to client 1
above) to rename or delete a directory when a reader is reading. Finally, be
aware of deadlocks while locking a hierarchy of directories/�les. You have to
lock di�erent directories and a �le in a path. You might obtain locks to some and
fail in getting locks to others. Design a mechanism that precludes deadlocks.

6

3.3 Replication

The second problem is to improve the performance through replication. The
problem is motivated from the type of access-pattern to �les that are seen in
normal �le systems and distributed �le systems. Some �les have a lot of requests
(e.g., system log �les), while others are very rarely accessed (e.g., some remote
photos in a user's home directory). We refer to the former as hot-�les, and
the latter as cold-�les. In distributed systems, if there are a lot of requests
attempting to read/write to one hot-�le, the networking and processing loads
on the storage server that stores the hot-�le is very high, while that of the storage
servers that host only cold-�les are rarely utilized. Consequently, the waiting
queue for accessing the hot-�les becomes very large, and might demonstrate
a bottleneck. You will provide a solution to avoid such potential bottlenecks
through replication.

3.3.1 Replication Policy

The naming server maintains a counter that keeps track of the number of re-
questers to a �le. This information will be useful to measure the hot-ness of a
�le (e.g., the larger the number of requesters to a �le; the higher the hot-ness
of the �le). To avoid stressing a replica as well as its hosting storage server, you
will scale replicas linearly as the number of requesters increases. Speci�cally,
you can set the number of replicas per a �le as follows:

num_replicas = ALPHA * num_requesters

where ALPHA is a positive constant. By controlling ALPHA, you control the
number of replicas per �le. In addition, you would want to limit the replicas
of a �le. For that sake, you can maintain a REPLICA_UPPER_BOUND, and avoid
replicating a �le whose number of replicas has exceeded this threshold. In
particular, you can now set the number of replicas per �le as follows:

num_replicas = min(ALPHA * num_requesters, REPLICA_UPPER_BOUND)

7

This �ne-grained control of replication will alter the number of replicas even
upon a change of one or two requesters. This might add to an already large
overhead of dynamic replication (what we are essentially implementing). To
enhance the policy, you can rather apply a coarse-grained approach by rounding
the number of replicas to the next integer that is a multiple of 20 (as an example).
That is,

num_requesters_coarse = {N | N >= num_requesters & a multiple of 20}

Afterwards, you can compute the number of replicas as follows (this is the
�nal formula that you should implement):

num_replicas = min(ALPHA * num_requesters_coarse, REPLICA_UPPER_BOUND)

Figure 2 shows an illustrative graph that demonstrates how the number of
replicas for a �le changes upon changing the number of requesters.

Figure 2: Linear Replication Policy with an upper-bound

3.3.2 Read-request Handling for Hot-�les

A simple approach for the server to perform load-balancing is by randomly
redirecting requests to replicas.

3.3.3 Write-request Handling for Hot-�les

You will implement an invalidation-based policy. Speci�cally, during a write call,
you will invalidate all-but-one replicas, and subsequently write on the remaining
replica (the remaining �le). Keep in mind that if you are to write to a replicated
�le, you have to wait for every reader or a writer (if any) to release their/its
lock(s).

8

4 Design and Implementation Guidelines

In this project, you will improve your Project 1 to add concurrency and repli-
cation. Hence, it is vital that basic components of project 1 (RMI, storage and
naming) are working well.

4.1 File Concurrency and Synchronization

The �rst important part in implementing correct synchronization is to provide
each �le/directory with a capability to lock. But where do you implement the
lock? Do you implement it at the naming server? Or do you implement it
at the storage server where the �le resides? How would you ensure that locks
work with replicated �les (second part of this project)? First, think about these
questions.

The second design decision is regarding queues. Recall that there are read-
ers and writers waiting to access a �le. A writer can lock only when there are
no readers: what happens when multiple readers request the �le - one after
another? Will the writer ever get a chance to lock the �le for writing?

The third decision is ensuring the ordering of reads/writes. A simple way
is FIFO : the �rst request (read/write) occurs before the second, second before
the third, and so on. However, note that there is no ordering between reads
and writes. This compromises the exact ordering, but helps improve the perfor-
mance of distributed systems: all reads can go on together even if there is one
write in-between. For some systems (Google search, for instance), this works
perfectly �ne (Read the section 7.3.1 "Eventual consistency" in the Tanenbaum
textbook). All reads should be in FIFO, and all writes should be in FIFO. How
do you ensure the order of reads and writes? How are the requests queued?

4.2 Replication

Replication introduces whole new range of challenges. The exact logic of repli-
cation is not too complicated. However, remember that you have to copy �les
from storage servers to others. This might require ensuring that directory hi-
erarchy for a �le is exactly created (but do not overwrite the �les that already
exists in sub-trees) as in the original storage server.

The second issue is to re-think �le functionalities. What will happen if you
read a �le? How do you write a �le, and update all replicas at di�erent storage
servers? How do you handle �le/directory deletions?

9

5 Design and Implementation Guidelines

Please use the code in P2_StarterCode.zip.

The starter code is an extension of the starter code for Project 1. The
starter code includes complete replacements for the apps/, test/, and confor-
mance/ directories, as these are all entirely the course sta�'s responsibility, and
are a�ected by the changes going from Project 1 from Project 2.

The main features of the starter code are as follows:

• The build/ and client/ directories are una�ected, and are included just for
completeness.

• The naming/ and storage/ directories contain only the new .java �les for
the updated Command and Service interfaces. These �les are meant to
replace the existing ones that you have. You should copy your implemen-
tations of the interfaces from Project 1, and edit them to conform to the
new interfaces. There are only a few new methods - lock and unlock -
in Service, and copy in Command.

• The unit/ directory is not included. You should copy your own, if you
want to use the unit tests that you already have.

• The rmi/ directory is not included. It is completely una�ected, and you
should copy your own rmi code into this directory.

• The common/ directory is not included, because there is only one �le in
there. It does change, but most of it stays the same as in Project 1.
You should copy your Project 1 version, and then make the Path class
implement Comparable for Project 2. The purpose of this is to allow
applications to pick a locking order when taking multiple locks - the order
on the paths will help to prevent deadlocks. A �le "NOTE" is included
with the starter code to give you a starting point in doing this, but if you
choose to use it, you should copy the method skeleton in "NOTE" into
your own copy of Path.java.

6 Test Suite

We have provided test code for Project 2 as well. The test cases test if your code
is conforming to the above design guidelines, and to check if the implementation
is correct. Please note that this is a service o�ered to help you design
and test faster. You are solely responsible to make sure that your
code works perfectly. During grading, we will also use other test cases to
make sure that your project is working as expected.

We have also provided "apps" that will let you use your distributed �le
system using command-line.

10

7 Q&A

We use Piazza as a platform for asking questions and receiving answers. Post-
ing your questions on Piazza will help the whole class bene�t and will certainly
avoid redundancy. Find our Piazza page at:

https://piazza.com/qatar.cmu/fall2017/15440/home.

8 Deliverable

As a �nal deliverable, you should submit an archive containing the source code
for the RMI library, naming server, storage server, and test cases in separate
directories.

9 Submission

Submit your code using AFS (Andrew File System):
/afs/qatar.cmu.edu/usr10/mhhammou/www/15440-f17/handin/p2/userid /,
where userid is your andrew ID.

10 Late Policy

• If you hand in on time, there is no penalty.

• 0-24 hours late = 25% penalty.

• 24-48 hours late = 50% penalty.

• More than 48 hours late = you lose all the points for this project.

NOTE: You can use your grace-days quota. For details about the quota,
please refer to the syllabus.

11

	Learning Objective
	Project Objective
	Conceptual Architecture
	System Description
	Consistency
	Reader Operation
	Writer Operation
	Locking a File/Directory in the Hierarchy of the Path

	Replication
	Replication Policy
	Read-request Handling for Hot-files
	Write-request Handling for Hot-files

	Design and Implementation Guidelines
	File Concurrency and Synchronization
	Replication

	Design and Implementation Guidelines
	Test Suite
	Q&A
	Deliverable
	Submission
	Late Policy

