
15-440 
Distributed Systems

Recitation 9

Tamim Jabban



Project 3

• Involves using the Message Passing    
Interface (MPI) 
• The Project will apply MPI to the 

popular clustering problem 
• The clustering problem will be solved 

via the K-Means algorithm
• Due date: November 16th



What is MPI?

•MPI = Message Passing Interface
•MPI is a library of routines that can be 

used to create parallel programs.



Fundamentals: 
Communicators & Groups
• MPI defines communicators and groups to 

define which collection of processes may 
communicate with each other
•Most MPI routines/functions require a 

communicator as an input parameter
•For simplicity, we’ll be using the 
MPI_COMM_WORLD communicator
• This communicator includes all of your 

MPI processes



Fundamentals: Ranks

•Within a communicator, each process 
has its own and unique ID or rank
• These IDs are commonly used conditionally to 

control program execution

• Ranks start from 0



MPI Routines
• MPI_Init(int *argc, char ***argv)

• This initializes the MPI execution 
environment.
• Therefore, this must be called (once) at the start of 

every MPI program



MPI Routines
• MPI_Comm_size(MPI_Comm comm, int *size)

• This determines the number of processes in 
the group associated with the comm
communicator



MPI Routines
• MPI_Comm_rank(MPI_Comm comm, int *rank)

• This determines the rank of the calling 
process within the communicator. 



MPI Routines

•MPI_Wtime()

• This returns an elapsed wall clock time in 
seconds (double precision) on the calling 
processor.
• We’ll use this to measure the runtime of an MPI 

program



MPI Routines

•MPI_Finalize()

• This  terminates the MPI execution 
environment.
• This should be called at the end of every MPI 

program



MPI Routines
• MPI_Send( void *buf, int count, MPI_Datatype

datatype, int dest, int tag, MPI_Comm comm)

• This is a basic blocking send operation. It 
returns only after the application has sent 
the data to the recipient(s)



MPI Routines
• MPI_Recv( void *buf, int count, MPI_Datatype

datatype, int dest, int tag, MPI_Comm comm)

• This receives a message and blocks until the 
requested data is available in the application 
buffer



Using MPI
• 4 VMs/nodes provisioned

• Coding in C

• Using n01 as your primary VM



Running MPI
• Machinefile

• Compiling:

• mpicc HelloWorld.c -o HelloWorld

• Copying object file:
• scp -p "HelloWorld" andrewid-n02.qatar.cmu.local:/home/hadoop/

• Running the program:

• mpiexec -f machinefile -n 2 ./HelloWorld



MPI Examples
• Together, we’ll program two MPI examples:

• HelloWorld

• A Distributed Sum Program


