
15-440
Distributed Systems

Recitation 5

Tamim Jabban

Project 2

• Involves building on your Project 1
Distributed File System (DFS): FileStack

• P2_StarterCode: Copy files into your P1
folder

• Release Date: October 2nd

• Due date: October 20th

Project 1: Recap
• Applied the knowledge of client-server

communication and Remote Method
Invocation (RMI) to build a Distributed File
System denoted as FileStack

• Employed stubs and skeletons to mask
communication, thereby transparently locating
and manipulating files stored remotely at a
cluster of machines

Entities & Architecture

• Storage Servers (SSs)
• Each SS stores physically files to share in a directory

(denoted as temporary directory) in its local file system

• Naming Server (NS)
• Stores metadata about all shared files in the form of a

mapping from filenames to storage servers (like DNS)

• Clients
• Perform operations on files (e.g., write, read etc.)

• Architecture
• Based on client-server architecture

Communication b/w Entities

Request-Reply
Communication Paradigm

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3

4

5

6

Registration

Duplicate Files, Create, Delete

CreateFile, CreateDirectory,
IsDirectory, Delete, List,
GetStorage

Results, Storage Stub

Read, Write, Size

Results (of Read, Write, Size)

1

2

3

4

5

6

File Correctness & Consistency

• Did we allow multiple clients to write on a file?

Yes!

• Did we allow a client to read a file under
modification?

Yes!

Storage
Server

Shared
File

abc.txt

Client A
Write to file abc.txt

Write to file abc.txt
Client B

P1

P2

Client C
Read from file abc.txt

P3

Project 2 Objectives

1. Devise and apply a synchronization algorithm
that:
 achieves correctness while sharing files
 and ensures fairness to clients.

2. Devise and apply a replication algorithm that:
 achieves load-balancing among storage servers
 and ensures consistency of replicated files.

Project 2 Objectives

1. Devise and apply a synchronization algorithm
that:
 achieves correctness while sharing files
 and ensures fairness to clients.

2. Devise and apply a replication algorithm that:
 achieves load-balancing among storage servers
 and ensures consistency of replicated files.

Logical Synchronization of
Readers and Writers

Mutual Exclusion

1. Reader:
 Reader is a Client who wishes to read a file at a SS
 Reader first requests a read/non-exclusive/shared lock

2. Writer:
 Writer is a Client who wishes to write to a file at a SS
 Writer first requests a write/exclusive lock

3. Order:
 Readers and writers are queued and served in the FIFO

order

Read Locks
• Readers request the NS for read locks before

reading files

• Readers do not modify contents of a file/directory

• Multiple readers can acquire a read lock
simultaneously

• Readers unlock files once done

Write Locks
• Writers request the NS for write locks before

reading/writing to files

• Writers can modify contents of files/directories

• Only one writer can acquire a write lock at a
time

• Writers unlock files once done

Write Locks
• NS grants a write lock on a file if:

• No reader is currently reading the file

• No writer is currently writing to the file

• Assume a writer requests a write lock for project2.txt
/FileStack/users/student1/work/project2.txt

• NS applies read locks on all the directories in the path
to prevent modifications

• NS then grants a write lock to the requestor of
project2.txt

Service Interface

• Two new operations available to
Clients:

• LOCK(path, read/write)

• UNLOCK(path, read/write)

Project 2 Objectives

1. Devise and apply a synchronization algorithm
that:

 achieves correctness while sharing files
 and ensures fairness to clients.

2. Devise and apply a replication algorithm that:
 achieves load-balancing among storage servers
 and ensures consistency of replicated files.

Dynamic Replication of Files

Why Replicate?

• In our DFS, we’ll have two kinds of Files:
• Files that have a lot of requests

• These are denoted as “hot-files”

• Files that are very rarely accessed
• These are denoted as “cold-files”

• To achieve load-balancing, we can replicate
“hot-files” onto other SSs

How Many Replicas?

• To measure file how “hot” a file is, the NS
can keep track of the number of requests
to a file:
• num_requesters: number of read requests to

a file

• To scale replicas linearly with the increase of
num_requests:
• num_replicas = α * num_requesters

How Many Replicas?
• However, we need to limit the number of

replicas:
• num_replicas = min(α * num_requesters, upper_bound)

• This is still too sensitive/fine-grained:
• num_requests_coarse: num_requests rounded to the

nearest multiple of 20

• num_replicas =

min(α * num_requests_coarse, replica_upper_bound)

How Many Replicas?

When to Replicate?
 NS would want to store num_requests as file

metadata

 However, how can we determine and in turn
update num_requests over time?
 We know that Clients invoke read operations on

storage servers
 Therefore, every “read” lock request from a client is

deemed as a read operation
 Afterward, NS increments num_requests
 Reavaluate num_replicas

How can we Replicate?
 NS first elects SSs to store the replicas

 NS commands each elected SS to copy the file
from the original SS

 Therefore, the metadata of a file now includes
a set of SSs instead of a single SS

How to Update Replicas
 When a Client requests a write lock on a file:

 It causes the NS to invalidate all the replicas except the
locked one

 Invalidation is achieved by commanding those
SSs hosting replicas to delete the file

 When the Client unlocks the file, the NS
commands SSs to copy the modified file

The Command Interface

• One new operation available to the
NS:

• Copy(path P, StorageStub S)
copies file with path P from StorageStub S

