Dist

15-440
‘ibuted Systems

Recitation

Tamim Jabban

Office Hours

' Office 1004

Sunday: 9:30 - 11:59 AM
Appointment: send an e-mail
Open door policy

Java: Object Oriented
Programming

* A programming paradigm based on objects

* An example of an Object template:

Student {

Java: Object Oriented
Programming

* A programming paradigm based on objects

* An Object can contain data/attributes:

Student {
String name;
int age;

Java: Obj

ect Oriented

Program

ming

* A programming paradigm based on objects

* An Object can

contain methods (behavior):

Student {

String name;
public String getName() {

¥

return name;

Java: Object Oriented
Programming

* A programming paradigm based on objects
* To create a Student Object:

Student Sameer new Student

Constructors

 Constructors take in zero or more variables to
create an Object:

Student {
String name;
int age;
public Student() {
}

Constructors

 Constructors take in zero or more variables to
create an Object:

Student {
String name;
int age;
Student(String name, int sAge) {
this.name = name;

age = SAge;

Inheritance

* Enables one object to inherit methods (behavior)
and attributes from another object.

* For example, an Alumni class can extend a
Student class:

Alumni extends Student

{

int graduationYear;

¥

* Alumni inherits name, age & getName from
Student.

Class Hierarchy

 This introduces subclasses and superclasses.

o A class that inherits from another class is called a

subclass:

o Alumni inherits from Student, and therefore Alumni is a
subclass.

e The class that is inherited is called a superclass:
 Student is inherited, and is the superclass.

Student

Alumni Exchange
Student

Inheritance

* Organizes related classes in a hierarchy:

 This allows reusability and extensibility of common
code

» Subclasses extend the functionality of a superclass

* Subclasses inherit all the methods of the
superclass (excluding constructors and privates)

e Subclasses can override methods from the
superclass

Access Control

e Access modifiers include:
e Public
e Protected
e Private

Access Control

e Access modifiers include:
* Public
e Protected
e Private

Access Control

e Access modifiers include:

* Public:
Atljl_ovvts the access of the object/attributes/methods from any other program that is using this
object:
Student {
setName(newName) {
this.name = newName;
}
¥

public class Test {
public static void main(String[] args) {
Student Sameer new Student
Sameer.setName(“Sameer”);

Access Control

e Access modifiers include:
e Public
* Protected
e Private

Access Control

e Access modifiers include:

* Protected:
e You can use this only in the following
 Same class as the variable,
* Any subclasses of that class,
* Or classes in the same package.

* A package is a group of related classes that serve a
common purpose (more on this later).

Access Control

e Access modifiers include:
e Public
e Protected
 Private

Access Control

* Access modifiers include:

* Private:
Restricted even further than a protected variable: you can use it only in the same
class:
Student {
setName(newName) {
this.name = newName;
}
public Student(String name) {
setName(name);
}
}
Test {
main(String[] args) {
Student Sameer new Student
Sameer—setName{“Sameer?)s // Not accessible anymore!
}

Object & Class Variables

* FEach Student object has its own name, age, etc...

 name and age are examples of Object Variables.

* \WWhen an attribute should describe an entire class of
objects instead of a specific object, we use Class Variables
(or Static Variables).

Object & Class Variables

A Class Variable Example:

Student {
public static String University= “CMU”;

Test() {

main(String[] args) {
Student Sameer new Student
String uni = Sameer.University;

Object & Class Variables

A Class Variable Example:

Student {
public static String University= “CMU”;

Test() {

main(String[] args) {
String uni = Student.University;

Encapsulation

* Encapsulation is restricting access to an object's components.
 How can we change or access name now?:
Student {

private String name;

private int age;

}

Student Sameer new Student

Encapsulation

* Encapsulation is restricting access to an object's components.
» Using getters and setters:
Student {

private String name;
private int age;
setName(newName) {
this.name = newName;

}

Student Sameer new Student

Sameer.setName(“Sameer”);

Overloading Methods

* Methods overload one another when they have the
same method name but:

* The number of parameters is different for the methods
* The parameter types are different

* Example:
public void changeDate(int year) {

public void changeDate(int year, int month) {

Overloading Methods

* Methods overload one another when they have same
method name but:

* The number of parameters is different for the methods
* The parameter types are different

* Another Example:
public void addSemesterGPA(float newGPA) {

public void addSemesterGPA(double newGPA) {

Overloading Methods

* Methods overload one another when they have same
method name but:

* The number of parameters is different for the methods

* The parameter types are different

* Another Example:
public void changeDate(int year) {

public void changeDate(int month) {

Overloading Methods

* Methods overload one another when they have same
method name but:

* The number of parameters is different for the methods
* The parameter types are different
* Another Example:

public~wQid changeDate(int year) {

We can't overload

} methods by just
changing the
public void chan i parameter name!

Overriding Methods

e Example:

public class Parent {
public int someMethod() {
return 3;
}

}

public class Child extends Parent {

public int someMethod() {
return 4;
t

Object

Overriding Methods

Student

* Any class extends the Java superclass "Object”.
* The Java "Object” class has 3 important methods:
 public boolean equals(Object obj);

 public int hashCode();
 public String toString();

* The hashCode is just a number that is generated by
any object:
* |t shouldn't be used to compare two objects!

* Instead, override the equals, hashCode, and toString
methods.

Overriding Methods

« Example: Overriding the toString and equals
methods in our Student class:

Student {

toString() {
return this.name;

Overriding Methods

e Example: Overriding the toString and equals methodsin
our Student class:

Student {

equals(Object obj) {
if (obj.getClass() != this.getClass()))
return false;
else {
Student s = (Student) obj;
return (s.name == this.name);

Abstract Classes

A class that is not completely implemented.

» Contains one or more abstract methods (methods with no bodies; only
signatures) that subclasses must implement

» Cannot be used to instantiate objects
* Abstract class header:
className
Car
* Abstract method signature:
methodName (args
speed args

e Subclass signature:

extends
Mercedes extends Car

Interfaces

* A special abstract class in which all the methods are abstract

 Contains only abstract methods that subclasses must
implement

e Interface header:
interfaceName
Car

» Abstract method signature:
methodName (args
CarType args
* Subclass signature:

subclassName someInterface
BMW Car

Generic Methods

* Generic or parameterized methods receive the data-
type of elements as a parameter

e £.g.: a generic method for sorting elements in an
array (be it Integers, Doubles, Objects etc.)

A Simple Box Class

» Consider this non-generic Box class:

public class Box {
private Object object;

ublic void set(Object object
’ this.objec% =Jobjectg)
}

public Object get() {
return object;

¥

A Simple Box Class

* A generic class is defined with the following format:

class name<T1l, T2, ..., Tn>
\)

{ |

/* o */ Type parameters

A Simple Box Class

* Now to make our Box class generic:

public class Box<T> {
// T stands for "Type"
private T t;
public void set(T t) {

this.t = t;
}
public T get() {
return t;
}

}

» To create, for example, an Integer "Box":

Box<Integer> integerBox;

Java Generic Collections

Classes that represent data-structures

Generic or parameterized since the elements’ data-type is given as
a parameter”®

e E.g.. LinkedList, Queue, ArrayList, HashMap, Tree
* Provide methods for: Class LinkedList<E>
d |terat|0ﬂ java.lang.Object
. ja'v'a.ultiII.::cus:ric:[g-:;Iectiins:u|l
* B u | k O pe ra t | O n S o jtal';al.dutzl..if;tratdzeqL|-3ntiaIList=E>

. java.util LinkedList=E=
» Conversion to/from arrays ... soomees

E - the type of elements held in this collection
All Implemented Interfaces:

Serializable, Cloneable, lterable<E=, Collection=E=, Deque<E=, List=E=, Queue=E=

public class LinkedLizt<E>

extends LbstractSequentiallist<En>

implements List«<E>», Degque<E», Cloneable, Serializakle
*The data-type passed as parameter to a collection’s constructor can
not be of the type Object, the unknown type ?, or a primitive data-type.
The data-type must be a Class.

Why Generic Functions?

» Consider writing a method that takes an array of
objects, a collection, and puts all objects in the
array into the collection

static wvoid fromf&rrayToCollection(Object[] arr, Collection<?> coll) {
for (Object o : arr) {
coll.gdd(o); // compile-time error
¥
h

static <T» woid fromArrayToCollection(T[] a, Collection<T> c) {

for (To:a){ Generic

c.add{c); // Correct

} } Method

ArrayList Class

* |s a subclass of Collection
e Implements a resizable array

* Provides methods for array manipulation
* Generic or parameterized

* Declaration and Instantiation:
ArrayList<ClassName> arraylListName
ArraylList<ClassName>();

ArraylList<Student> students =
ArraylList<Student>();

ArrayList Methods

e Add, Get, Set, Clear, Remove, Size, IsEmpty, Contains,
IndexOf, LastindexOf, AsList etc.

* Basic Iterator:
for (int i = 9; 1 < arraylListName.size(); i++) {

ClassName obj = arrayListName.get(i)

}
 Advanced lterator:

for (ClassName obj : arrayListName) {

¥

Generic Classes with
Wildcards

* Wildcards «?» denote “unknown” or “any” type
(resembles <T>)

public void summAll(Arraylist<? extends Number:> listOfNumbers) {}

