
15-440
Distributed Systems

Recitation 7

Tamim Jabban

Project 2

• Involves building on your Project 1
Distributed File System (DFS): FileStack

• P2_StarterCode: Copy files into your P1
folder

• Due date: November 1st

Project 1: Recap
• Applied the knowledge of client-server

communication and Remote Method
Invocation (RMI) to build a Distributed File
System denoted as FileStack

• Employed stubs and skeletons to mask
communication, thereby transparently locating
and manipulating files stored remotely at a
cluster of machines

Entities & Architecture

• Storage Servers (SSs)
• Each SS stores physically files to share in a directory

(denoted as temporary directory) in its local file system

• Naming Server (NS)
• Stores metadata about all shared files in the form of a

mapping from filenames to storage servers (like DNS)

• Clients
• Perform operations on files (e.g., write, read etc.)

• Architecture
• Based on client-server architecture

Communication b/w Entities

Request-Reply
Communication Paradigm

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3

4

5

6

Registration

Duplicate Files, Create, Delete

CreateFile, CreateDirectory,
IsDirectory, Delete, List,
GetStorage

Results, Storage Stub

Read, Write, Size

Results (of Read, Write, Size)

1

2

3

4

5

6

File Correctness & Consistency

• Did we allow multiple clients to write on a file?

Yes!

• Did we allow a client to read a file under
modification?

Yes!

Storage
Server

Shared
File

abc.txt

Client A
Write to file abc.txt

Write to file abc.txt
Client B

P1

P2

Client C
Read from file abc.txt

P3

Project 2 Objectives

1. Devise and apply a synchronization algorithm
that:
 achieves correctness while sharing files
 and ensures fairness to clients.

2. Devise and apply a replication algorithm that:
 achieves load-balancing among storage servers
 and ensures consistency of replicated files.

Project 2 Objectives

1. Devise and apply a synchronization algorithm
that:
 achieves correctness while sharing files
 and ensures fairness to clients.

2. Devise and apply a replication algorithm that:
 achieves load-balancing among storage servers
 and ensures consistency of replicated files.

Logical Synchronization of
Readers and Writers

Mutual Exclusion

1. Reader:
 Reader is a Client who wishes to read a file at a SS
 Reader first requests a read/non-exclusive/shared lock

2. Writer:
 Writer is a Client who wishes to write to a file at a SS
 Writer first requests a write/exclusive lock

3. Order:
 Readers and writers are queued and served in the FIFO

order

Read Locks
• Readers do not modify contents of a file/directory

• Readers request the NS for read locks before
reading files

• Readers unlock files once done

• Multiple readers can acquire a read lock
simultaneously

Write Locks
• Writers can modify contents of files/directories

• Writers request the NS for write locks before
reading/writing to files

• Writers unlock files once done

• Only one writer can acquire a write lock at a
time

Write Locks
• NS grants a write lock on a file if:

• No reader is currently reading the file

• No writer is currently writing to the file

• Assume a writer requests a write lock for project2.txt
/FileStack/users/student1/work/project2.txt

• NS applies read locks on all the directories in the path
to prevent modifications

• NS then grants a write lock to the requestor of
project2.txt

Service Interface

• Two new operations available to
Clients:

• LOCK(path, read/write)

• UNLOCK(path, read/write)

Project 2 Objectives

1. Devise and apply a synchronization algorithm
that:

 achieves correctness while sharing files
 and ensures fairness to clients.

2. Devise and apply a replication algorithm that:
 achieves load-balancing among storage servers
 and ensures consistency of replicated files.

Dynamic Replication of Files

Why Replicate?

• In our DFS, we’ll have two kinds of Files:
• Files that have a lot of requests

• These are denoted as “hot-files”

• Files that are very rarely accessed
• These are denoted as “cold-files”

• To achieve load-balancing, we can replicate
“hot-files” onto other SSs

How Many Replicas?

• To measure file “hot-ness,” the NS can
keep track of the number of requests to a
file:
• num_requesters: number of read requests to

a file

• To scale replicas linearly with the increase of
num_requests:
• num_replicas = α * num_requesters

How Many Replicas?
• However, we need to limit the number of

replicas:
• num_replicas = min(α * num_requesters, upper_bound)

• This is still too sensitive/fine-grained:
• num_requests_coarse: num_requests rounded to the

nearest multiple of 20

• num_replicas =

min(α * num_requests_coarse, replica_upper_bound)

When to Replicate?
 NS would want to store num_requests as file

metadata

 However, how can we determine and in turn
update num_requests over time?
 We know that Clients invoke read operations on

storage servers
 Therefore, every “read” lock request from a client is

deemed as a read operation
 Afterward, NS increments num_requests
 Reavaluate num_replicas

How can we Replicate?
 NS first elects SSs to store the replicas

 NS commands each elected SS to copy the file
from the original SS

 Therefore, the metadata of a file now includes
a set of SSs instead of a single SS

How to Update Replicas
 When a Client requests a write lock on a file:

 It causes the NS to invalidate all the replicas except the
locked one

 Invalidation is achieved by commanding those
SSs hosting replicas to delete the file

 When the Client unlocks the file, the NS
commands SSs to copy the modified file

The Command Interface

• One new operation available to the
NS:

• Copy(path, StorageStub)

