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Project |

e Involves creating a Distributed File
System (DFS): FileStack

e Stores data that does not fit on a single
machine

e Enables clients to perform operations on
files stored on remote servers (RMI)




-ntities

e Three main entities in FileStack:

e Client:
e Creates, reads, writes files using RM|
e Naming Server:
e Runs at a predefined address
e Maps file names to Storage Servers
e Therefore, it has metadata
e Storage Servers:

e Physically hosts the files in its local file
system




Architecture

e FileStack will boast a Client-Server architecture:
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Communication

e Registration phase
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Communication

e Post registration, the Naming Server responds with a list of
auplicates (if any).
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Communication

e System is now ready, the Client can invoke requests.

Naming
Server

Storage
Server 1

Storage
H Server 2

Client

Storage
Server n




Communication

e Client requests a file (to read, write etc...) from the Naming
Server.
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Communication

e Depending on the operation, the Naming Server could either perform it,
or, respond back to the Client with the Storage Server that hosts the file.
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Communication

o After the Client receives which Storage Server hosts the file, it contacts
that Server to perform the file operation.
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Communication

When a Client makes invokes a method, it basically invokes a remote
method (and hence Remote Method | nvocation)

e This is because the logic of the method resides on the server

e To perform this remote invocation, we need a library: Java RM|

RMI allows the following:

* \When the client invokes a request, it is not a aware of where it resides (local or
remote). It only knows the method's name.

 \When a server executes a method, it is oblivious to the fact that the method was
initiated by a remote client.




RV

e The RMI library is based on two important objects:

e Stubs:

 \When a client needs to perform an operation, it invokes
the method via an object called the “stub”

e |f the operationis local, it just calls the Aelper
function that implements this operation’s logic

e |f the operation is remote:

e Sends (marshals) the method name and
arguments to the appropriate server Cor
skeleton),

e Receives the results (and unmarshals),
e Reports them back to the client.




RV

e The RMI library is based on two important objects:

e Skeletons:

e These are counterparts of stubs and reside reversely at
the servers

e [herefore, each stub communicates with a
corresponding skeleton

e |t's responsible for:
e Listening to multiple clients
e Unmarshalling requests
e Processing the requests

 Marshalling & sending results to the
corresponding stub




Interfaces

e Servers declare all their methods in interfaces

e Such interfaces contain a subset of the methods the server
can perform




Naming Server Interfaces

Implements Implements

Service
Interface

Registration
Interface

isDirectory()
isFile()

register()




Storage Server Interfaces
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Creating Stubs & Skeletons

e For a client to create a Stub, it needs:
e An interface of the corresponding Skeleton

e Network address of the corresponding Skeleton
o (Skeleton itself)

e For a server to create a Skeleton, it needs:
e An interface

e A class that implements the logic of the methods
defined in the given interface

e Network address of the server
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These stubs are sent to the Naming server
during registration




Simple Stub-Skeleton
Communication
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Full

-xample: Client Read
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Figure 2: An example of a Client performing a read operation on file ‘abc’.




Creating a Stub

e [n Java, a stub is implemented as a dynamic proxy
e A proxy has an associated invocation handler

e Example: getStorage in Figure 2:

 When getStorage is invoked on the Service Stub, the proxy
encodes the method name (getStorage) and the argument(s) (file
abc)

e [he proxy sends the encoded data to the invocation handler

e Theinvocation handler determines if it is a local or remote
procedure, and acts accordingly (as how it was shown earlier)
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