15-440

Distribu

ReC

(EC

itatl

Systems
on 3

Tamim Jabban

Project |

e Involves creating a Distributed File
System (DFS): FileStack

e Stores data that does not fit on a single
machine

e Enables clients to perform operations on
files stored on remote servers (RMI)

-ntities

e Three main entities in FileStack:

e Client:
e Creates, reads, writes files using RM|
e Naming Server:
e Runs at a predefined address
e Maps file names to Storage Servers
e Therefore, it has metadata
e Storage Servers:

e Physically hosts the files in its local file
system

Architecture

e FileStack will boast a Client-Server architecture:

Naming
Server

Storage
Server 1

Storage
H Server 2

Client

Storage
Server n

Communication

e Registration phase

Naming
Server

Storage

Server 1

Storage
ﬂ Server 2

Client

Storage
Server n

Communication

e Post registration, the Naming Server responds with a list of
auplicates (if any).

Naming
Server

Storage
Server 1

Storage
ﬂ Server 2

Client

Storage
Server n

Communication

e System is now ready, the Client can invoke requests.

Naming
Server

Storage
Server 1

Storage
H Server 2

Client

Storage
Server n

Communication

e Client requests a file (to read, write etc...) from the Naming
Server.

Naming
Server

Storage
Server 1

Storage
ﬂ Server 2

Client

Storage
Server n

Communication

e Depending on the operation, the Naming Server could either perform it,
or, respond back to the Client with the Storage Server that hosts the file.

Naming
Server

Storage
Server 1

Storage
ﬂ Server 2

Client

Storage
Server n

Communication

o After the Client receives which Storage Server hosts the file, it contacts
that Server to perform the file operation.

Naming
Server

Storage
Server 1

Server 2

Storage
Server n

Communication

When a Client makes invokes a method, it basically invokes a remote
method (and hence Remote Method | nvocation)

e This is because the logic of the method resides on the server

e To perform this remote invocation, we need a library: Java RM|

RMI allows the following:

* \When the client invokes a request, it is not a aware of where it resides (local or
remote). It only knows the method's name.

 \When a server executes a method, it is oblivious to the fact that the method was
initiated by a remote client.

RV

e The RMI library is based on two important objects:

e Stubs:

 \When a client needs to perform an operation, it invokes
the method via an object called the “stub”

e |f the operationis local, it just calls the Aelper
function that implements this operation’s logic

e |f the operation is remote:

e Sends (marshals) the method name and
arguments to the appropriate server Cor
skeleton),

e Receives the results (and unmarshals),
e Reports them back to the client.

RV

e The RMI library is based on two important objects:

e Skeletons:

e These are counterparts of stubs and reside reversely at
the servers

e [herefore, each stub communicates with a
corresponding skeleton

e |t's responsible for:
e Listening to multiple clients
e Unmarshalling requests
e Processing the requests

 Marshalling & sending results to the
corresponding stub

Interfaces

e Servers declare all their methods in interfaces

e Such interfaces contain a subset of the methods the server
can perform

Naming Server Interfaces

Implements Implements

Service
Interface

Registration
Interface

isDirectory()
isFile()

register()

Storage Server Interfaces

Storage

Server

Implements Implements

Command
Interface

Storage
Interface

create
delete

Creating Stubs & Skeletons

e For a client to create a Stub, it needs:
e An interface of the corresponding Skeleton

e Network address of the corresponding Skeleton
o (Skeleton itself)

e For a server to create a Skeleton, it needs:
e An interface

e A class that implements the logic of the methods
defined in the given interface

e Network address of the server

Naming Server Skeletons &
Stubs

Implements Implements

Service
Interface

Registration
Interface

Service
Skeleton

Registration
Skeleton

UE%

rage Server Skeletons &

DS

Storage

Server

Implements Implements

Command
Interface

Storage
Interface

Command
Skeleton

Storage
Skeleton

ARA

rage Server Skeletons &

DS

Storage

Server

Implements Implements

Command
Interface

Storage
Interface

Command
Stub

Storage
Stub

\ J

Y

These stubs are sent to the Naming server
during registration

Simple Stub-Skeleton
Communication

Implements

Naming
Server

Implements

Service Service
Interface Skeleton

Service Creates
Stub

Client

Registration Registration
Interface Skeleton

Full

-xample: Client Read

'read(abc,0, 13!

lﬁ

1
1
1
1
1
|
StorageS’u‘ub.read(abc,O,10)
1 I
1
1
1
1
1
1
1
1
I

———

Client Service Service Naming Storage Storage
Stub Skeleton Skeleton
Server Server
: I 1 T :
I | 1
Ser!l.ficeStub.GetStorage(ab:) : : : !
i GetStorage(abc) i i E i
I [I I 1
: I GetStorage(abc) 1 ! I
I I > 1 I
1 I 1 | 1
: < : : :
— 1 I 1 | 1
2 \ 1' Storage : ! !
- ; StorageStub : Stub l I |
N : l I :
I 1 I 1
Storage : | ' |
Stub : ! | |
I [I 1
I 1 | 1
: l l |
| | I |
reali(abc,0,10) ! | :
' i ' :
I
I |
I
I
I
|
I
I

1
1
1
1
1
1

Figure 2: An example of a Client performing a read operation on file ‘abc’.

Creating a Stub

e [n Java, a stub is implemented as a dynamic proxy
e A proxy has an associated invocation handler

e Example: getStorage in Figure 2:

 When getStorage is invoked on the Service Stub, the proxy
encodes the method name (getStorage) and the argument(s) (file
abc)

e [he proxy sends the encoded data to the invocation handler

e Theinvocation handler determines if it is a local or remote
procedure, and acts accordingly (as how it was shown earlier)

	15-440 � Distributed Systems�Recitation 3
	Project 1
	Entities
	Architecture
	Communication
	Communication
	Communication
	Communication
	Communication
	Communication
	Communication
	RMI
	RMI
	Interfaces
	Naming Server Interfaces
	Storage Server Interfaces
	Creating Stubs & Skeletons
	Naming Server Skeletons & Stubs
	Storage Server Skeletons & Stubs
	Storage Server Skeletons & Stubs
	Simple Stub-Skeleton Communication
	Full Example: Client Read
	Creating a Stub

