
15-440: Recitation 8

School of Computer Science

Carnegie Mellon University, Qatar

Fall 2014

Date: Oct 22, 2014

I- Intended Learning Outcome (ILO):

The ILO of this recitation is:

 Apply parallel programs according to the MPI standard.

II- Objectives:

 Provide students with a brief overview on the MPI programming model.

 Help students develop and run MPI parallel programs.

III- MPI Overview:

a- What is MPI?

 MPI = Message Passing Interface.

 MPI is a library of routines that can be used to create parallel programs.

 Major goal = Portability.

b- Reasons for using MPI

 Standardization.

 Portability.

 Performance Opportunities.

 Functionality.

 Availability.

c- Main Features:

 Can run simultaneously on different architectures.

 Independent and concurrent execution of programs.

 Each processor has private memory and address space.

 Deadlocks can occur.

d- Programming Model:

 With MPI all parallelism is explicit: the programmer is responsible for correctly

identifying parallelism and implementing parallel algorithms using MPI constructs.

e- Fundamentals:

Communicators and groups:

 MPI uses objects called communicators and groups to define which collection of
processes may communicate with each other.

 Most MPI routines require you to specify a communicator as an argument.
 Communicators and groups will be covered in more detail in the class lectures.

For now, simply use MPI_COMM_WORLD whenever a communicator is required
- it is the predefined communicator that includes all of your MPI processes.

Rank:

 Within a communicator, every process has its own unique, integer identifier
assigned by the system when the process initializes. A rank is sometimes also
called a "task ID". Ranks are contiguous and begin at zero.

 Used by the programmer to specify the source and destination of messages.
Often used conditionally by the application to control program execution (if
rank=0 do this / if rank=1 do that).

General MPI Program Structure:

Declarations, Prototypes, etc.

 .

 .

Program starts



 Serial Code



Initialize MPI environment Parallel Code Begins







 Do work & make message passing

calls






 Terminate MPI environment Parallel Code Ends



 Serial Code



Program ends

MPI include file

f- Some of the Commonly MPI Routines (Will be used today in our lab):

1. MPI_Init(int *argc, char ***argv)

This routine initializes the MPI execution environment. This function must be called
in every MPI program, must be called before any other MPI functions and must be
called only once in an MPI program.

2. MPI_Comm_size(MPI_Comm comm, int *size)

This routine determines the number of processes in the group associated with a

communicator. Generally used within the communicator MPI_COMM_WORLD to

determine the number of processes being used by your application.

3. MPI_Comm_rank(MPI_Comm comm, int *rank)

This routine determines the rank of the calling process within the communicator.

4. MPI_Wtime()

This routine returns an elapsed wall clock time in seconds (double precision) on the
calling processor.

5. MPI_Finalize()

This routine terminates the MPI execution environment. This function should be the
last MPI routine called in every MPI program - no other MPI routines may be called
after it.

6. MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest,

 int tag, MPI_Comm comm)

This routine is a basic blocking send operation. It returns only after the application
buffer in the sending task becomes free for reuse.

7. MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source,

 int tag, MPI_Comm comm, MPI_Status *status)

This routine receives a message and blocks until the requested data is available in
the application buffer in the receiving task.

IV- An example of MPI- Hello World

 Building and running an MPI program (we assume the file name of your
program is HelloWorld.c):

 We already set up MPI 2-1.4.1 for every one of you on your 4VMs cluster.

 Check that everything is in order at this point by doing:

>$ which mpicc
>$ which mpiexec

All should refer to the commands in the bin subdirectory of your install
directory.

 Compile your program using mpicc:

>$ mpicc HelloWorld.c -o HelloWorld

 Create a file named machinefile and include in it the list of the hosts that
you want to run the executable on:

>$ cat machinefile

 Host1 # Run 1 process on Host1

 Host2:2 # Run 2 processes on Host2

 Now run your MPI program using mpiexec:

>$ mpiexec -f machinefile -n 2 ./HelloWorld

Hello World. My ID = 0 and the number of processes created = 2

Hello World. My ID = 1 and the number of processes created = 2

V- Problem:

Write an MPI program that will sum up elements of an array. The root process in your

program acts as a master and the child processes act as slaves. The master allocates

equal portions of the array to each slave. Each process then (the master as well as the

slaves) calculates a partial sum of the portion of the array assigned to it. After done,

each slave sends its partial sum to the master, who collect all partial sums from all the

slaves and calculates a grand total.

