Extending the Functionality of a B+ Tree

Database Applications - Recitation 11
Zeinab Khalifa
April 2nd, 2020

What are we trying to solve?

High-Level Overview

btree.bin

american

High-Level Overview

btree.bin

american

postings.bin

/

Postings list

’3\;
/_\
N

High-Level Overview

btree.bin

postings.bin

/

Postings list

’3\;
/\
N

docs.bin

american beauty

usual
suspect ...

american history

Doc1

Doc 2

Doc n

Understanding the Tree & KeyRecord Structures

struct PageHdr {
char page_type;
Long page_num;
Long next_leaf_page num;
int num_bytes;

int num_keys;
KeyRecord* key list ptr;
Long final _right page num;

Understanding the Tree & KeyRecord Structures

struct PageHdr {
char page_type;
Long page_num;
Long next_leaf_page num;
int num_bytes;
int num_keys;
KeyRecord* key list ptr;
Long final _right page num;

struct KeyRecord {
Long page_num;
int key len;
char* stored_key;
Long posting;
KeyRecord* next;

Bree & KeyRecord Example

[C] Forleaf pages only

PageHdr ‘N’ or ‘L’

|:| For non-leaf pages only

Page Number

Next Leaf Page No

NumBytes [NumKeys

KeyListPtr

Ptr to the rightmost child

Bree & KeyRecord Example

[C] Forleaf pages only
P Hd FN“or-I:’
ageHdr N or ‘'L [C] For non-leaf pages only

Page Number

Next Leaf Page No

NumBytes [NumKeys

KeyListPtr

Ptr to the rightmost child

KeyRecord
KeyRecord
/r Page Number Page Number

KeyLen KeyLen
page “ n [”
containing Key Ptr —t—>“@aa Key Ptr —t—>“aab
keys<“aaa” - -

Posting Ptr \rl'. Posting Ptr

Next EI(;SI ;. Next T

Bree & KeyRecord Example

PageHdr ‘N’ or ‘L’

Page Number

Next Leaf Page No

NumBytes [NumKeys

KeyListPtr

Ptr to the rightmost child

[C] Forleaf pages only
|:| For non-leaf pages only

<3 3 7
>3/57 >7

KeyRecord
KeyRecord
/r Page Number Page Number

KeyLen KeyLen
page “ ” « ”
containing Key Ptr —t—>‘@aa Key Ptr —t—>“aab
keys<“aaa” ; :

Posting Ptr \'L Posting Ptr

Next EI(;SI ;. Next e

Existing Functionality

C

| <doc>
p <num>
s <key>
S <key>
-

q

Project structure & Demo

What do you need to implement?

Command

Output

f <keyl>
<keys2>

Print in alphabetical order (forward) the distinct
keys that are in the range defined by <key1>
and <key2> (including the bounds). If <keyi1>
and <key2> are not in alphabetical order, print
"Invalid key order!" If no documents have keys
within the given range, print "Keys in the given
range not found!"

What do you need to implement?

Command

Output

f <keyl>
<keys2>

Print in alphabetical order (forward) the distinct
keys that are in the range defined by <key1>
and <key2> (including the bounds). If <keyi1>
and <key2> are not in alphabetical order, print
"Invalid key order!" If no documents have keys
within the given range, print "Keys in the given
range not found!"

b <keyl>
<keys2>

Print in reverse alphabetical order (backward)
the distinct keys that are in the range defined
by <key1> and <key2> (including the bounds).
If <key1> and <key2> are not in alphabetical
order, print "Invalid key order!" If no documents
have keys within the given range, print "Keys in
the given range not found!"

How to start?

Start Early!
Due on April 18th, 2020

How to start?

Start Early!
Due on April 18th, 2020

Explore!

Spend time exploring
the code, testing and
understanding it

Stuck? Design

Office hours, Piazza! Build and design your
algorithm

Don't reinvent the

Test, test, test!
wheel

Test your Many helper functions

implementation and are defined for you. Do
make the necessary your best to utilize the
changes existing functions

