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What are we trying to solve?



High-Level Overview
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Understanding the Tree & KeyRecord Structures

struct PageHdr {
char page_type;
Long page_num;
Long next_leaf_page num;
int num_bytes;

int num_keys;
KeyRecord* key list ptr;
Long final _right page num;




Understanding the Tree & KeyRecord Structures

struct PageHdr {
char page_type;
Long page_num;
Long next_leaf_page num;
int num_bytes;
int num_keys;
KeyRecord* key list ptr;
Long final _right page num;

struct KeyRecord {
Long page_num;
int key len;
char* stored_key;
Long posting;
KeyRecord* next;




Bree & KeyRecord Example
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Existing Functionality
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Project structure & Demo



What do you need to implement?

Command

Output

f <keyl>
<keys2>

Print in alphabetical order (forward) the distinct
keys that are in the range defined by <key1>
and <key2> (including the bounds). If <keyi1>
and <key2> are not in alphabetical order, print
"Invalid key order!" If no documents have keys
within the given range, print "Keys in the given
range not found!"




What do you need to implement?

Command

Output

f <keyl>
<keys2>

Print in alphabetical order (forward) the distinct
keys that are in the range defined by <key1>
and <key2> (including the bounds). If <keyi1>
and <key2> are not in alphabetical order, print
"Invalid key order!" If no documents have keys
within the given range, print "Keys in the given
range not found!"

b <keyl>
<keys2>

Print in reverse alphabetical order (backward)
the distinct keys that are in the range defined
by <key1> and <key2> (including the bounds).
If <key1> and <key2> are not in alphabetical
order, print "Invalid key order!" If no documents
have keys within the given range, print "Keys in
the given range not found!"




How to start?

Start Early!
Due on April 18th, 2020



How to start?

Start Early!
Due on April 18th, 2020

Explore!

Spend time exploring
the code, testing and
understanding it

Stuck? Design

Office hours, Piazza! Build and design your
algorithm

Don't reinvent the

Test, test, test!
wheel

Test your Many helper functions

implementation and are defined for you. Do
make the necessary your best to utilize the
changes existing functions




