Practicing B+ Trees

Database Applications - Recitation 10

Zeinab Khalifa

March 26th, 2020

Exercise (1)

Preparing our B+ Tree

To fit a B+ tree page into a disk block of size 64 bytes

To fit a B+ tree page into a disk block of size 64 bytes

(n+1) Pointers

To fit a B+ tree page into a disk block of size 64 bytes

To fit a B+ tree page into a disk block of size 64 bytes Assume that: sid/key size = 4 bytes and pointers are of size 8 bytes

To fit a B+ tree page into a disk block of size 64 bytes Assume that: sid/key size = 4 bytes and pointers are of size 8 bytes

Exercise (2)

Let's start populating our data in the Student relation

Insert into Student (SID, Name, Major, GPA) values

(5, "", "", ""), (10,"","",""), (15,"","",""), (20,"","",""), (25,"","",""), (30,"","",""),

•••

(90,*"","",""*), (28,*"",","*)

SID	Name	Major	GPA
5	James Smith	Computer Science	2.91
10	Michael Smith	Computer Science	3.22
15	Robert Smith	Biological Sciences	2.59
20	Maria Hernandez	Computer Science	3.00
25	Michael Garcia	Computational Biology	2.54
30	Maria Garcia	Information Systems	4.0
50			
55			
60			
65			
75			
80			
85	••		••
90	••		••
28			

Exercise (3)

Let's play with numbers...

SID	Name	Major	GPA
5	James Smith	Computer Science	2.91
10	Michael Smith	Computer Science	3.22
15	Robert Smith	Biological Sciences	2.59
20	Maria Hernandez	Computer Science	3.00
25	Michael Garcia	Computational Biology	2.54
30	Maria Garcia	Information Systems	4.0
6000	Hammoud	Computer Science	4.0

- Key size = 4 bytes
- Pointer Size = 8 bytes
- Disk block = 64 bytes.
- Avg(Size(rid-list)) = 2
- d = 2
- 6000 total records

SID	Name	Major	GPA
5	James Smith	Computer Science	2.91
10	Michael Smith	Computer Science	3.22
15	Robert Smith	Biological Sciences	2.59
20	Maria Hernandez	Computer Science	3.00
25	Michael Garcia	Computational Biology	2.54
30	Maria Garcia	Information Systems	4.0
		•••	
6000	Hammoud	Computer Science	4.0

- Key size = 4 bytes
- Pointer Size = 8 bytes
- Disk block = 64 bytes.
- Avg(Size(rid-list)) = 2
- d = 2
- 6000 total records

- Key size = 4 bytes
- Pointer Size = 8 bytes
- Disk block = 64 bytes.
- Avg(Size(rid-list)) = 2
- d = 2
- 6000 total records

$\log_{#pointers}(#leaves) + 1$

$\log_5(\# leaves) + 1$

- Key size = 4 bytes
- Pointer Size = 8 bytes
- Disk block = 64 bytes.
- Avg(Size(rid-list)) = 2
- d = 2
- 6000 total records

 $\log_5(\#leaves) + 1$

- Key size = 4 bytes
- Pointer Size = 8 bytes
- Disk block = 64 bytes.
- Avg(Size(rid-list)) = 2
- d = 2
- 6000 total records

 $\log_5(\#leaves) + 1$

- Avg(Size(rid-list)) = 2
- d = 2
- 6000 total records

$\log_5(\# leaves) + 1$

- Key size = 4 bytes
- Pointer Size = 8 bytes
- Disk block = 64 bytes.
- Avg(Size(rid-list)) = 2
- d = 2
- 6000 total records

$\log_5(1000) + 1 = 5.2 \approx 6$ levels

- Key size = 4 bytes
- Pointer Size = 8 bytes
- Disk block = 64 bytes.
- Avg(Size(rid-list)) = 2
- d = 2
- 6000 total records

Exercise (4)

Happy students! 🙂

Happy students! ③

We decided to increase the GPA of each student by 0.5 for all students with GPA < 4.00. Accordingly, we wrote this query..

UPDATE Students SET GPA=GPA+0.5 WHERE GPA < 4.00

Happy students! ③

We decided to increase the GPA of each student by 0.5 for all students with GPA < 4.00. Accordingly, we wrote this query..

UPDATE Students SET GPA=GPA+0.5 WHERE GPA < 4.00 Oopps!

After running this query, we found that all students ended up with a GPA 4.00. Why do you think this happened? What are some possible solutions?