
Practicing B+ Trees
Database Applications - Recitation 10

Zeinab Khalifa

March 26th, 2020

Exercise (1)
Preparing our B+ Tree

Let’s assume our mini
disk has a block size of 64

bytes

K1 K2 … Kn

A B+ Tree Page

My index is on sid

Consider the relation

Student(sid: type, name: char, major: char, gpa: double)

How can we build our B+ tree?
We need to know how many keys (order)…

(n+1) Pointers

Let’s assume our mini
disk has a block size of 64

bytes

K1 K2 … Kn

A B+ Tree Page

(n+1) Pointers

Let’s assume our mini
disk has a block size of 64

bytes

K1 K2 … Kn

A B+ Tree Page

(n+1) Pointers

To fit a B+ tree page into a disk block of size 64 bytes

K1 K2 … Kn

A B+ Tree Page

(n+1) Pointers

To fit a B+ tree page into a disk block of size 64 bytes

K1 K2 … Kn

A B+ Tree Page

(n+1) Pointers

To fit a B+ tree page into a disk block of size 64 bytes

≤Size() 64

K1 K2 … Kn

A B+ Tree Page

(n+1) Pointers

To fit a B+ tree page into a disk block of size 64 bytes
Assume that: sid/key size = 4 bytes and pointers are of size 8 bytes

≤Size() 64

K1 K2 … Kn

A B+ Tree Page

(n+1) Pointers

To fit a B+ tree page into a disk block of size 64 bytes
Assume that: sid/key size = 4 bytes and pointers are of size 8 bytes

≤Size() 64
4𝑛 + 8 𝑛 + 1 ≤ 64

Solving for n
𝑛 ≤ 5.3

Maximum number of keys 2d = 5,
Tree order: d = 2

Exercise (2)
Let’s start populating our data in the Student relation

SID Name Major GPA

5 James Smith Computer Science 2.91

10 Michael Smith Computer Science 3.22

15 Robert Smith Biological Sciences 2.59

20 Maria Hernandez Computer Science 3.00

25 Michael Garcia Computational Biology 2.54

30 Maria Garcia Information Systems 4.0

50

55

60

65

75

80

85

90

28

Insert into Student (SID, Name, Major, GPA) values
(5, “”, “”, “”),
(10,””,””,””),
(15,””,””,””),
(20,””,””,””),
(25,””,””,””),
(30,””,””,””),
…
(90,””,””,””),
(28,””,””,””)

25 50 75

5 10 15 20 25 28 30 -- 50 55 60 65 75 80 85 90

25 50 75

5 10 15 20 25 28 30 -- 50 55 60 65 75 80 85 90

Now insert key 70
The leaf page is full but the index is not

25 50 75

5 10 15 20 25 28 30 -- 50 55 60 65 75 80 85 90

Now insert key 70
The leaf page is full but the index is not

50 55 60 65 70

25 50 75

5 10 15 20 25 28 30 -- 50 55 60 65 75 80 85 90

Now insert key 70
The leaf page is full but the index is not

50 55 60 65 70

25 50 60 75

5 10 15 20 25 28 30 -- 50 55 60 65 75 80 85 90

Now insert key 70
The leaf page is full but the index is not

50 55 60 65 70

25 50 60 75

5 10 15 20 25 28 30 -- 50 55 60 65 75 80 85 90

Now insert key 70
The leaf page is full but the index is not

50 55 60 65 70

25 50 60 75

5 10 15 20 25 28 30 -- 75 80 85 90

Now insert key 70
The leaf page is full but the index is not

50 55 60 65 70

25 50 60 75

5 10 15 20 25 28 30 -- 75 80 85 90

Now insert key 95
The leaf page and the index are full

50 55 60 65 70

25 50 60 75

5 10 15 20 25 28 30 -- 75 80 85 90

Now insert key 95
The leaf page and the index are full

50 55 60 65 70

75 80 85 90 95

85 needs to rise to the index but its full

25 50 60 75

5 10 15 20 25 28 30 -- 75 80 85 90

Now insert key 95
The leaf page and the index are full

50 55 60 65 70

75 80 85 90 95

85 needs to rise to the index but its full

25 50 60 75 85

25 50 60 75

5 10 15 20 25 28 30 -- 75 80 85 90

Now insert key 95
The leaf page and the index are full

50 55 60 65 70

75 80 85 90 95

85 needs to rise to the index but its full

25 50

60 to rise up

60

60 75 85

25 50 60 75

5 10 15 20 25 28 30 -- 75 80 85 90

Now insert key 95
The leaf page and the index are full

50 55 60 65 70

75 80 85 90 95

85 needs to rise to the index but its full

25 50

60 to rise up

60

60 75 85

25 50 60 75

5 10 15 20 25 28 30 -- 75 80 85 90

Now insert key 95
The leaf page and the index are full

50 55 60 65 70

75 80 85 90 95

85 needs to rise to the index but its full

25 50

60 to rise up

60

75 85

5 10 15 20 25 28 30 -- 75 80 85 90

Now insert key 95
The leaf page and the index are full

50 55 60 65 70

75 80 85 90 95

85 needs to rise to the index but its full

25 50

60 to rise up

60

75 85

5 10 15 20 25 28 30 -- 75 80 85 90

Now insert key 95
The leaf page and the index are full

50 55 60 65 70

75 80

85 needs to rise to the index but its full

25 50

60 to rise up

60

75 85

85 90 95

5 10 15 20 25 28 30 --

Now insert key 95
The leaf page and the index are full

50 55 60 65 70

75 80

25 50

60 to rise up

60

75 85

85 90 95

Exercise (3)
Let’s play with numbers…

SID Name Major GPA

5 James Smith Computer Science 2.91

10 Michael Smith Computer Science 3.22

15 Robert Smith Biological Sciences 2.59

20 Maria Hernandez Computer Science 3.00

25 Michael Garcia Computational Biology 2.54

30 Maria Garcia Information Systems 4.0

…

6000 Hammoud Computer Science 4.0

After inserting 6000 records, we are curious to know how high our tree
has become!

K* : (k1, [ridx, ridy])

h

Alternative 3

• Key size = 4 bytes
• Pointer Size = 8 bytes
• Disk block = 64 bytes.
• Avg(Size(rid-list)) = 2
• d = 2
• 6000 total records

SID Name Major GPA

5 James Smith Computer Science 2.91

10 Michael Smith Computer Science 3.22

15 Robert Smith Biological Sciences 2.59

20 Maria Hernandez Computer Science 3.00

25 Michael Garcia Computational Biology 2.54

30 Maria Garcia Information Systems 4.0

…

6000 Hammoud Computer Science 4.0

After inserting 6000 records, we are curious to know how high our tree
has become!

K* : (k1, [ridx, ridy])

h

• Key size = 4 bytes
• Pointer Size = 8 bytes
• Disk block = 64 bytes.
• Avg(Size(rid-list)) = 2
• d = 2
• 6000 total records

After inserting 6000 records, we are curious to know how high our tree
has become!

K* : (k1, [ridx, ridy])

h

• Key size = 4 bytes
• Pointer Size = 8 bytes
• Disk block = 64 bytes.
• Avg(Size(rid-list)) = 2
• d = 2
• 6000 total records

After inserting 6000 records, we are curious to know how high our tree
has become!

K* : (k1, [ridx, ridy])

h

log#𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑠 #𝑙𝑒𝑎𝑣𝑒𝑠 + 1

• Key size = 4 bytes
• Pointer Size = 8 bytes
• Disk block = 64 bytes.
• Avg(Size(rid-list)) = 2
• d = 2
• 6000 total records

After inserting 6000 records, we are curious to know how high our tree
has become!

K* : (k1, [ridx, ridy])

h

log5 #𝑙𝑒𝑎𝑣𝑒𝑠 + 1

• Key size = 4 bytes
• Pointer Size = 8 bytes
• Disk block = 64 bytes.
• Avg(Size(rid-list)) = 2
• d = 2
• 6000 total records

After inserting 6000 records, we are curious to know how high our tree
has become!

K* : (k1, [ridx, ridy])

h

log5 #𝑙𝑒𝑎𝑣𝑒𝑠 + 1

• Key size = 4 bytes
• Pointer Size = 8 bytes
• Disk block = 64 bytes.
• Avg(Size(rid-list)) = 2
• d = 2
• 6000 total records

After inserting 6000 records, we are curious to know how high our tree
has become!

K* : (k1, [ridx, ridy])

h

log5 #𝑙𝑒𝑎𝑣𝑒𝑠 + 1

Size of K* = 20 BYTES

• Key size = 4 bytes
• Pointer Size = 8 bytes
• Disk block = 64 bytes.
• Avg(Size(rid-list)) = 2
• d = 2
• 6000 total records

After inserting 6000 records, we are curious to know how high our tree
has become!

K* : (k1, [ridx, ridy])

h

log5 #𝑙𝑒𝑎𝑣𝑒𝑠 + 1

Size of K* = 20 BYTES
How many can we fit in

1 disk block/page?

• Key size = 4 bytes
• Pointer Size = 8 bytes
• Disk block = 64 bytes.
• Avg(Size(rid-list)) = 2
• d = 2
• 6000 total records

After inserting 6000 records, we are curious to know how high our tree
has become!

K* : (k1, [ridx, ridy])

h

log5 #𝑙𝑒𝑎𝑣𝑒𝑠 + 1

Size of K* = 20 BYTES
How many can we fit in

1 disk block/page?
64

20
≈ 3 K*

• Key size = 4 bytes
• Pointer Size = 8 bytes
• Disk block = 64 bytes.
• Avg(Size(rid-list)) = 2
• d = 2
• 6000 total records

After inserting 6000 records, we are curious to know how high our tree
has become!

K* : (k1, [ridx, ridy])

h

log5 #𝑙𝑒𝑎𝑣𝑒𝑠 + 1

Size of K* = 20 BYTES
How many can we fit in

1 disk block/page?
64

20
≈ 3 K*

Each K* has 2 Records

Total = 3 * 2 = 6 Records in a leaf

• Key size = 4 bytes
• Pointer Size = 8 bytes
• Disk block = 64 bytes.
• Avg(Size(rid-list)) = 2
• d = 2
• 6000 total records

After inserting 6000 records, we are curious to know how high our tree
has become!

K* : (k1, [ridx, ridy])

h

log5 #𝑙𝑒𝑎𝑣𝑒𝑠 + 1

Size of K* = 20 BYTES
How many can we fit in

1 disk block/page?
64

20
≈ 3 K*

Each K* has 2 Records

Total = 3 * 2 = 6 Records in a leaf

6000

6
= 1000

• Key size = 4 bytes
• Pointer Size = 8 bytes
• Disk block = 64 bytes.
• Avg(Size(rid-list)) = 2
• d = 2
• 6000 total records

After inserting 6000 records, we are curious to know how high our tree
has become!

K* : (k1, [ridx, ridy])

h

log5 #𝑙𝑒𝑎𝑣𝑒𝑠 + 1

• Key size = 4 bytes
• Pointer Size = 8 bytes
• Disk block = 64 bytes.
• Avg(Size(rid-list)) = 2
• d = 2
• 6000 total records

After inserting 6000 records, we are curious to know how high our tree
has become!

K* : (k1, [ridx, ridy])

h

log5 1000 + 1 = 5.2 ≈ 6 𝑙𝑒𝑣𝑒𝑙𝑠

Exercise (4)
Happy students! ☺

Happy students! ☺

We decided to increase the GPA of each student by 0.5 for all students
with GPA < 4.00. Accordingly, we wrote this query..

UPDATE Students SET GPA=GPA+0.5 WHERE GPA < 4.00

Happy students! ☺

We decided to increase the GPA of each student by 0.5 for all students
with GPA < 4.00. Accordingly, we wrote this query..

UPDATE Students SET GPA=GPA+0.5 WHERE GPA < 4.00

Oopps!
After running this query, we found that all students ended up with a GPA 4.00.

Why do you think this happened?
What are some possible solutions?

