Carnegie Mellon University in Qatar

Database Applications

15-415 - Spring 2018

Problem Set 5

Out: April 11, 2018

Due: April 19, 2018

1 Serializability and Locking Protocols [20 Points]

Consider Schedule A given below in **Table 1** below. $\underline{R(.)}$ and $\underline{W(.)}$ denote 'Read' and 'Write', respectively. Ignore the lock $\underline{T1:S(Y)}$, for the moment.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
T1	S(Y)	R(Y)																		R(X)	
T2				W(X)																	
Т3															R(X)		W(Z)				
T4									R(Z)		(W(Y)										

Table 1: Schedule A with 4 transactions

- (a) Is schedule A serializable? Explain.
- (b) Is schedule A allowed by 2PL? If no, briefly explain why. If yes, fill in **Table 1** with the lock/unlock requests that could have happened.

 Notes:
 - Make sure that the 2PL protocol is obeyed.
 - Use the notations <u>S(.)</u>, <u>X(.)</u>, and <u>U(.)</u> to denote **S**hared lock, e**X**clusive lock, and **U**nlock, respectively.
- (c) Is schedule A allowed by strict 2PL? Explain.

2 Deadlock Detection [25 Points]

Consider the following two schedules, 1 and 2, shown in Table 1 and Table 2, respectively.

	1	2	3	4
T1	S(A)			S(B)
T2		X(A)		
Т3			X(B)	

Table 2: Schedule 1

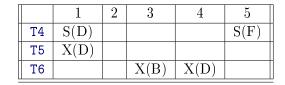


Table 3: Schedule 2

- (a) For Schedule 1, assuming no other transactions exist, list which lock requests will be granted or blocked by the lock manager.
- (b) Give the wait-for graph for Schedule 1.
- (c) For Schedule 1, indicate whether or not there will be a deadlock at the end of the schedule. Explain briefly.
- (d) For Schedule 2, assuming no other transactions exist, list which lock requests will be granted or blocked by the lock manager.
- (e) Give the wait-for graph for schedule 2.
- (f) For Schedule 2, indicate whether or not there will be a deadlock at the end of the schedule. Explain briefly.

3 B^+ Tree Locking [25 Points]

Consider the B^+ tree in **Figure 2** below. Use the non-conservative **lock-coupling** algorithm, Bayer-Schkolnick, to lock the B^+ tree. The algorithm is described in lecture 24, as well as in page 561, Section 17.5.2 in the textbook.

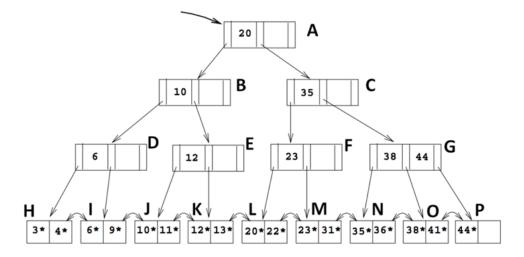


Figure 1: A sample B^+ tree

For each of the following transactions give the sequence of lock/unlock requests. As in question 1, use the notations $\underline{S(.)}$, $\underline{X(.)}$, and $\underline{U(.)}$ to denote Shared lock, eXclusive lock, and Unlock, respectively.

- (a) T1: Search for the data entry 25*
- (b) T2: Insert the data entry 39*
- (c) T3: Insert the data entry 59*
- (d) T4: Delete the data entry 13*

 $Handout\ continues\ on\ the\ next\ page(s)$

4 Recovery using ARIES [30 Points]

Consider the execution history shown in **Figure 2**. *In addition*, the system crashes during recovery after writing two log records to stable storage and **again** after writing another log record. Assume that we run the **ARIES** algorithm to recover from crashes. Answer the following questions:

LSN	LOG
00	 begin_checkpoint
10	 end_checkpoint
20	 update: T1 writes P1
30	 update: T2 writes P2
40	 update: T3 writes P3
50	 update: T4 writes P4
60	 T4 commit
70	 T2 commit
80	 update: T3 writes P2
90	 T2 end
100	 update: T1 writes P5
110	 T3 abort
	 CRASH, RESTART

Figure 2: Execution with Multiple Crashes

- (a) What is done during the **Analysis** phase? In particular, show how the records in the Dirty Page and the Transaction tables are populated/altered/deleted during **Analysis** phase.
- (b) What is done during the **Redo** phase? In particular, show how the **ARIES** algorithm proceeds with and finishes the **Redo** phase. Also, describe an execution that illustrates the use of the first condition in the **Redo** phase.
- (c) What is done during the **Undo** phase? In particular, show how the **ARIES** algorithm proceeds with and finishes the **Undo** phase.
- (d) Show the log when recovery is complete, including all non-null prevLSN and undoNextLSN values in log records.