Database Applications (15-415)

SQL-Part Il
Lecture 9, February 7, 2016

Mohammad Hammoud

E,I:_ﬁg\_ﬂ gl_mg_w_ﬁ ﬂEm__al_\_
e Mellon University ()at



Today...

= | ast Session:

Standard Query Language (SQL)- Part I

" Today’s Session:

Standard Query Language (SQL)- Part Il

" Announcements:

PS2 is due today by midnight

Quiz | is on Thursday Feb 11, 2015 (all topics covered so far
are included)

No class on Tuesday Feb 09 due to the Qatar National
Sports Day

Project | is due on Tuesday Feb 16 by midnight
A dgdyelagy gl =i 2l

Carnegie Mellon University Qatar



Outline

NULL values and Join Variants

Complex Integrity Constraints

and Triggers

e g dyglagn dl =i aaly

Carnegie Mellon University Qatar



NULL Values

Column values can be unknown (e.g., a sailor may not yet
have a rating assigned)

Column values may be inapplicable (e.g., a maiden-name
column for men!)

NULL values can be used in such situations
However, NULL values complicate many issues!

" Comparing NULL to a valid value returns unknown
= Comparing NULL to a NULL returns unknown



NULL Values

= Considering a row with rating = NULL and age = 20; How
does it compare with the following Boolean expressions?

= Rating=8 ORage<40 =>» TRUE
= Rating =8 AND age <40 = unknown

" |n general, what about?
= NOT unknown =» ynknown
" True OR unknown = Trye
False OR unknown =» unknown
False AND unknown = F3lse
®* True AND unknown =» nknown



NULL Values

= Considering a row with rating = NULL and age = 20; How
does it compare with the following Boolean expressions?

= Rating=8 ORage<40 =» TRUE
= Rating =8 AND age <40 =» unknown

( N

Three-Valued Logic!

\_ n/




Inner Joins

= Tuples of a relation that do not match some row in
another relation (according to a join condition c¢) do not
appear in the result

= Such ajoinis referred to as “Inner Join” (so far, all inner joins)

select ssn, c-name
from takes, class
where takes.c-id = class.c-id

Equivalently:

select ssn, c-name
from takes join class on takes.c-id = class.c-id




An Example of Inner Joins

= Find all SSN(s) taking course s.e.

TAKES CLASS
SSN  |c-id  |grade c-id  c-name units
123 15-413 A 15-413 s.e. 2
234 15-413 B 15-412 o.s. 2
SSN |c-name
123 s.e

234 s.€ 0.S.: gone!



Outer Joins

= Tuples of a relation that do not match some row in
another relation (according to a join condition ¢) can still
appear exactly once in the result
= Such ajoin is referred to as “Outer Join”
= Result columns will be assigned NULL values

select ssn, c-name
from takes outer join class
on takes.c-id=class.c-id




An Example of Outer Joins

= Find all SSN(s) taking course s.e.

TAKES CLASS
SSN  |c-id  |grade c-id  c-name units
123 15-413 A 15-413 s.e. 2
234 15-413 B 15-412 o.s. 2
SSN |c-name
123 s.e
234 s.e.

null o.s. <



Joins

" The general SQL syntax:

select [column list]
from table name

-------------- --------------

on quallf/cat/on_li;‘ft

L
1
I
1
I

Outer Join Type Description

Left Outer Join A rows without a matching B
row appear in the result

Right Outer Join B rows without a matching A

row appear in the result

Full Outer Join Both A and B rows without a
match appear in the result



Outline

NULL values and Join Variants

Complex Integrity Constraints

and Triggers

e g dyglagn dl =i aaly

Carnegie Mellon University Qatar



Integrity Constraints- A Review

" An Integrity Constraint (IC) describes conditions that
every legal instance of a relation must satisfy

* |nserts/deletes/updates that violate IC’s are disallowed

= |Cs can be used to:

" Ensure application semantics (e.g., sid is a key)

" Prevent inconsistencies (e.g., sname has to be a
string, age must be < 20)

! q ,ql d ) ~ H

Carnegie Mellon University Qatar



Types of Integrity Constraints- A Review

= |C types:
" Domain constraints

" Primary key constraints
" Foreign key constraints

= General constraints
= Useful when more general ICs than keys are involved
= Can be specified over a single table and across tables

A= dgdyglagy gl =i ol

Carnegie Mellon University Qatar




General Constraints Over a Single Table

= Complex constraints over a single table can be defined using
CHECK conditional-expression

sname CHAR (10)}------—weco_____

|
Vo o o e e e e e e e e e

rating INTEGER, A domain constraint
ageREAL, .
1{PRIMARY KEY (sid), !

CREATE TABLE Sailors Ssid INTEGER,

=l

_____________________ > g e e
R

R
-
P td
-, ,
X A

A primary key constraint A general constraint

A= dgdyglagy gl =i ol

Carnegie Mellon University Qatar



General Constraints Over a Single Table

= How can we enforce that “Interlake” boats cannot be reserved?

CREATE TABLE Reserves (sid INTEGER,
bid INTEGER,

—————————————————————————————————————————————

———————————————————————————————————————————

A foreign key constraint

| CHECK (‘Interlake’ NOT IN i

(SELECT B.bname |
FROM Boats B |
WHERE B.bid = Reserves. b1d))),=

_____________________________________________

s T -

A= dgdyglagy gl =i ol

Carnegie Mellon University Qatar



General Constraints Across Tables-
Motivation

" How can we enforce that the number of boats plus
the number of sailors should not exceed 1007

N\
S
~

=
-
-
-
-
-
-
-
Pig
-
-
~ -
-
-
-
-
-
-
-
-
-
-

-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

S~
n~
~

- ~SS
-
- S

- ~

ST
~
~
Ss
~

e FROM Sailors S}+
T (SELECT COUNT (B?bid)\
,,,,,,,,,,, FROM Boats B)) < 100))

What if the Sailors table is empty and we insert more than 100 rows into Boats?



General Constraints Across Tables-
Assertions

" How can we enforce that the number of boats plus
the number of sailors should not exceed 1007

CREATE ASSERTION smallClub

CHECK

( (SELECT COUNT (S.sid) FROM Sailors S)

+ (SELECT COUNT (B.bid) FROM Boats B) <100 )

ASSERTION is the right solution; not associated with either table!




New Domains

= Users can define new domains using the
CREATE DOMAIN statement

-
-
-
-
-
-
-
-
-

~| Source type

[ Y T
~

CREATE DOMAIN ratingvalXINTEGERMEFAULT 1>
CHECK ( VALUE >=1 AND VALUE <= 10)

\"( Optional!

CREATE DOMAIN ratingval2 INTEGER DEFAULT 1
CHECK ( VALUE >=1 AND VALUE <= 20)

ratingvall and ratingval2 CAN be compared!

Domain constraints will be always enforced (also for new domains)!




Distinct Types

= Users can define new distinct types using the
CREATE TYPE statement

CREATE TYPE ratingtypel AS INTEGER

CREATE TYPE ratingtype2 AS INTEGER

ratingtypel and ratingtype2 CANNOT be compared!

Domain constraints will be always enforced (also for new types)!

P dgdgglagn gl =i 2 aly

Carnegie Mellon University Qatar



Triggers

= Atriggeris a procedural code that is automatically
executed in response to certain events on a
particular table or view in a database

" Triggers can be activated either before or after
= |nsertions

= Deletions
= Updates

( arnegie \I( II(mlm\(l |l\



A Trigger Example

" Set a timestamp field whenever a row in the takes
table is updated

TAKES

SSN [c-id grade

123 15-413 A
234 15-413 B

= First: we need to add our timestamp field

ALTER TABLE takes
ADD COLUMN updated TIMESTAMP

Ao dgdyglagn gl =i 2

Carnegie Mellon University Qatar



A Trigger Example

" Set a timestamp field whenever a row in the takes
table is updated

TAKES

SSN [c-id grade

123 15-413 A
234 15-413 B

= Second: we need to create a function that sets the
“updated” column with the current timestamp

CREATE FUNCTION update_col()
BEGIN
NEW.updated = NOW();
RETURN NEW;
END




A Trigger Example

" Set a timestamp field whenever a row in the takes
table is updated

TAKES

SSN  |c-id grade
123 15-413 A
234 15-413 B

= Third: we need to Invoke update_col() when a row in the
takes table is updated

CREATE TRIGGER update_takes_modtime
A row-level trigger; AFTER UPDATE ON takes

otherwise, it will be @ [¢+--------- { FOREACHROW !

———

statement-level trigger EXECUTE PROCEDURE update_col();




Outline

NULL values and Join Variants

Complex Integrity Constraints

and Triggers

v

e g dyglagn dl =i aaly

Carnegie Mellon University Qatar



Java Database Connectivity

SQL commands can be embedded in host language programs

A popular data access technology which provides an API for
qguerying and manipulating data in (any) storage system is
called Java Database Connectivity (JDBC)

Direct interactions with a DBMS occurs through a DBMS-
specific driver

A driver is a software program that translates JDBC calls into
DBMS-specific calls
= Drivers do not necessarily interact with a DBMS that understands SQL
= Thus, a DBMS in JDBC’s parlance is usually referred to as data source



Establishing a Connection
= With JDBC, a database is represented by a URL

= With PostgreSQL™, this takes one of the following forms:
= jdbc:postgresql:database
» jdbc:postgresql://host/database
= jdbc:postgresql://host:port/database

= To connect to a database, a Connection instance from JDBC
can be used

Connection db = DriverManager.getConnection(url, username, password);




Establishing a Connection

= A number of additional properties can be used to specify
additional driver behavior specific to PostgreSQL™

String url = "jdbc:postgresql://localhost/test";
Properties props = new Properties();
props.setProperty("user","Hammoud");
props.setProperty("password","secret");
props.setProperty("ssl","true");

Connection conn = DriverManager.getConnection(url, props);

Equivalently:

String url = "jdbc:postgresql://localhost/test?user=Hammoud&password=secret&ssl=true";
Connection conn = DriverManager.getConnection(url);




Establishing a Connection

= Putting it all together, you can create the following function:

public Connection getConnection() throws SQLException {

String url = "jdbc:postgresql://localhost/test";

Properties props = new Properties();
props.setProperty("user","Hammoud");
props.setProperty("password","secret");
props.setProperty("ssl","true");

Connection conn = DriverManager.getConnection(url, props);

System.out.printIn("Connected to database");
return conn;




Creating Tables

= Assume the following students table:

Sid Name
1 Hammoud
2 Esam

SQL: | CREATE TABLE students( sid INTEGER, name CHAR(30), PRIMARY KEY (sid))

public void createTable() throws SQLException {
String createT = "create table students (sid INTEGER, " +
“name CHAR(30) “ +
"PRIMARY KEY (sid))";
JDBC: Statement stmt = null;
try { stmt = conn.createStatement();
stmt.executeUpdate(createT);
} catch (SQLException e) { e.printStackTrace(e); }
finally { if (stmt != null) { stmt.close(); } }




Populating Tables

= Assume the following students table:

JDBC:

Sid Name
1 Hammoud
2 Esam

sqQL: INSERT INTO students values (1, ‘Hammoud)
" | INSERT INTO students values (2, ‘Esam’)

public void populateTable() throws SQLException {
Statement stmt = null;
try {
stmt = conn.createStatement();
stmt.executeUpdate( "insert into students values(1, ‘Hammoud‘)”);
stmt.executeUpdate( "insert into students values(2, ‘Esam‘)”);
} catch (SQLException e) {}
finally { if (stmt != null) { stmt.close(); } }




Querying Tables

= Assume the following students table:

Sid Name
1 Hammoud
2 Esam

SQL: | SELECT sid, name from students

public static void viewTable() throws SQLException {

A “cursor” tha
to one row of
at a time

t points
data

JDBC:

Statement stmt = null;
Strlng query = "select sid, name from students",;

thL,{ .

stmt = conn, createStatement() Columns retrieved by names
ResuItSeﬂ rs 32 r stmt.executeQuery(query);  ___---- jI:;;ﬂ

while (rs. next()) { P ,/'/

int sID = rs. getlnt(’5|d" I g
String sName = rs. getStrmg("name’b
System.out.printin(sName + "\t'" ¥ sID); }

} catch (SQLException e ) {} finally { if (stmt != null) { stmt.close(); } }




Querying Tables

= Assume the following students table:

JDBC:

Sid Name
1 Hammoud
2 Esam

SQL: | SELECT sid, name from students

public static void viewTable() throws SQLException {

Statement stmt = null;
String query = "select sid, name from students";

tr .
Vi OR: Columns retrieved by numbers
stmt = conn.createStatement(); —
ResultSet rs = stmt.executeQuery(query); ___---"~ ~ gotind
while (rs.next()){ . - 7

int sID = rs.getint{1)} .~
String sName = rs.\g'etString\(Z),E
System.out.printIn(sName +~”\t" +sID); }

} catch (SQLException e ) {} finally { if (stmt != null) { stmt.close(); } }




Cursor Methods

* Methods available to move the cursor of a result set:
" next()
" previous()
= first()
" Last() By default, you can
= beforeFirst()
= afterlLast()
= relative(int rows)

call only next()!

= absolute(int row)



Updating Tables

By default, ResultSet objects cannot be updated, and their cursors can
only be moved forward

ResultSet objects can be though defined to be scrollable (the cursor
can move backwards or move to an absolute position) and updatable

public void modifyStudents() throws SQLException {

Statement stmt = null;

try {

Lt stmt =_con.createStatement(): _*/ __ - -
,{ stmt = con.createStatement(ResultSet. TYPE_SCROLL_SENSITIVE, H
X ResultSet.CONCUR_UPDATABLE); j

ResultSet uprs = stmt.executeQuery( "SELECT * FROM students");

while (uprs.next()) {

String old_n = uprs.getString(“name");
uprs.updateString( “name", “Mohammad” + old_n);
uprs.updateRow(); }

} catch (SQLException e ) {} finally { if (stmt != null) { stmt.close(); } }




Result Set Types

= TYPE FORWARD ONLY (the default)
= The result set is not scrollable

= TYPE_SCROLL _INSENSITIVE
= The result set is scrollable

= The result set is insensitive to changes made to the underlying
data source while it is open

= TYPE_SCROLL SENSITIVE
= The result set is scrollable

" The result set is sensitive to changes made to the underlying data
source while it is open




Result Set Concurrency

" The concurrency of a ResultSet object determines
what level of update functionality is supported

= Concurrency levels:
= CONCUR_READ ONLY (the default)
= The result set cannot be updated

= CONCUR_UPDATABLE
" The result set can be updated



Prepared Statements

JDBC allows using a PreparedStatement object for sending SQL

statements to a database

This way, the same statement can be used with different

values many times

ps.clearParameters();
{p's's'e'tl'n't(l' 111);
| ps.setString(2, “Hammoud”);

I|nt numRows1 = ps.executeUpdate();,

'ps setint(1, 222);
. ps.setString(2, “Esam”);
lmt numRows2 = ps. executeUpdate()

\
|
|
I
l

)

a-~\

Strlng sql = “INSERT into students values\(? ?)
PreparedStatement ps = conn.prepareStatement(sq|);

-

More about
JDBC in the
upcoming two
recitations!

N

J




Next Class

Storing Data: Disks and Files

Car 1\' lo U sity Qata



