
Database Applications (15-415)

The Relational Model (Cont’d) &
Relational Algebra (Intro)

Lecture 4, January 19, 2016

Mohammad Hammoud

Today…
 Last Session:

 The relational model

 Today’s Session:

 The relational model (Cont’d)
 Basic SQL

 ER to relational databases

 Relational algebra

 Relational query languages (in general)

 Announcements:

 PS1 is due on Thursday, Jan 21st by midnight

 In the next recitation we will practice on translating ER designs into
relational databases

Outline

The Relational Model: Basic SQL

Translating ER Diagrams to Tables
and Summary

Query Languages



 SQL (a.k.a. “Sequel”) stands for Structured Query Language

 SQL was developed by IBM (system R) in the 1970s

 There is a need for a standard since SQL is used by
many vendors

 Standards:
 SQL-86
 SQL-89 (minor revision)
 SQL-92 (major revision)
 SQL-99 (major extensions)
 SQL-2003 (minor revision)
 SQL-2011

SQL - A Language for Relational DBs

 The SQL language has two main aspects (there are other
aspects which we discuss next week)
 Data Definition Language (DDL)

 Allows creating, modifying, and deleting relations
and views

 Allows specifying constraints

 Allows administering users, security, etc.

 Data Manipulation Language (DML)

 Allows posing queries to find tuples that satisfy criteria

 Allows adding, modifying, and removing tuples

DDL and DML

 S1 can be used to create the “Students” relation

 S2 can be used to create the “Enrolled” relation

Creating Relations in SQL

CREATE TABLE Students
(sid: CHAR(20),
name: CHAR(20),
login: CHAR(10),
age: INTEGER,

gpa: REAL)

CREATE TABLE Enrolled
(sid: CHAR(20),
cid: CHAR(20),
grade: CHAR(2))

The DBMS enforces domain constraints whenever tuples are added or modified

S1

S2

Adding and Deleting Tuples

 We can insert a single tuple to the “Students” relation using:

INSERT INTO Students (sid, name, login, age, gpa)

VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

 We can delete all tuples from the “Students” relation
which satisfy some condition (e.g., name = Smith):

DELETE
FROM Students S

WHERE S.name = ‘Smith’

Powerful variants of these commands are available; more next week!

Querying a Relation

 How can we find all 18-year old students?

 How can we find just names and logins?

SELECT *

FROM Students S

WHERE S.age=18

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

SELECT S.name, S.login

FROM Students S

WHERE S.age=18

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@eecs 18 3.2

53650 Smith smith@math 19 3.8

Querying Multiple Relations
 What does the following query compute assuming S and E?

SELECT S.name, E.cid

FROM Students S, Enrolled E

WHERE S.sid=E.sid AND E.grade=“A”

S.name E.cid

Smith Topology112

sid cid grade

53831 Carnatic101 C

53831 Reggae203 B

53650 Topology112 A

53666 History105 B

We get:

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@eecs 18 3.2

53650 Smith smith@math 19 3.8

S E

Destroying and Altering Relations

 How to destroy the relation “Students”?

DROP TABLE Students

 How to alter the schema of “Students” in order
to add a new field?

ALTER TABLE Students

ADD COLUMN firstYear: integer

The schema information and the tuples are deleted

Every tuple in the current instance is extended with a null value in the
new field!

Integrity Constraints (ICs)

 An IC is a condition that must be true for any instance
of the database (e.g., domain constraints)
 ICs are specified when schemas are defined
 ICs are checked when relations are modified

 A legal instance of a relation is one that satisfies all
specified ICs
 DBMS should not allow illegal instances

 If the DBMS checks ICs, stored data is more faithful to
real-world meaning
 Avoids data entry errors, too!

 Keys help associate tuples in different relations

 Keys are one form of integrity constraints (ICs)

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

sid cid grade

53666 15-101 C

53666 18-203 B

53650 15-112 A

53666 15-105 B

Enrolled
Students

Keys

 Keys help associate tuples in different relations

 Keys are one form of integrity constraints (ICs)

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

sid cid grade

53666 15-101 C

53666 18-203 B

53650 15-112 A

53666 15-105 B

PRIMARY KeyFOREIGN Key

Keys

Enrolled
Students

 A set of fields is a superkey if:
 No two distinct tuples can have same values in all key fields

 A set of fields is a primary key for a relation if:
 It is a minimal superkey

 What if there is more than one key for a relation?
 One of the keys is chosen (by DBA) to be the primary key
 Other keys are called candidate keys

 Examples:
 sid is a key for Students (what about name?)
 The set {sid, name} is a superkey (or a set of fields that contains a key)

Superkey, Primary and Candidate Keys

Primary and Candidate Keys in SQL

 Many candidate keys (specified using UNIQUE) can be designated
and one is chosen as a primary key

 Keys must be used carefully!

 “For a given student and course, there is a single grade”

Primary and Candidate Keys in SQL

 Many candidate keys (specified using UNIQUE) can be designated
and one is chosen as a primary key

 Keys must be used carefully!

 “For a given student and course, there is a single grade”

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid))

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid),
UNIQUE (cid, grade))

vs.

Primary and Candidate Keys in SQL

 Many candidate keys (specified using UNIQUE) can be designated
and one is chosen as a primary key

 Keys must be used carefully!

 “For a given student and course, there is a single grade”

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid))

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid),
UNIQUE (cid, grade))

vs.

Q: What does this mean?

Primary and Candidate Keys in SQL

 Many candidate keys (specified using UNIQUE) can be designated
and one is chosen as a primary key

 Keys must be used carefully!

 “For a given student and course, there is a single grade”

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid))

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid),
UNIQUE (cid, grade))

vs.

“A student can take only one course, and no two students in a course receive the
same grade”

Foreign Keys and Referential Integrity

 A foreign key is a set of fields referring to a tuple
in another relation

 It must correspond to the primary key of the
other relation

 It acts like a `logical pointer’

 If all foreign key constraints are enforced,
referential integrity is said to be achieved
(i.e., no dangling references)

Foreign Keys in SQL

 Example: Only existing students may enroll for
courses

 sid is a foreign key referring to Students

 How can we write this in SQL?

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

sid cid grade

53666 15-101 C

53666 18-203 B

53650 15-112 A

53666 15-105 B

Enrolled
Students

CREATE TABLE Enrolled
(sid CHAR(20),cid CHAR(20),grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid) REFERENCES Students)

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

sid cid grade

53666 15-101 C

53666 18-203 B

53650 15-112 A

53666 15-105 B

 Example: Only existing students may enroll for
courses

Enrolled
Students

Foreign Keys in SQL

Enforcing Referential Integrity

 What should be done if an “Enrolled” tuple with a non-
existent student id is inserted? (Reject it!)

 What should be done if a “Students” tuple is deleted?
 Disallow its deletion

 Delete all Enrolled tuples that refer to it

 Set sid in Enrolled tuples that refer to it to a default sid

 Set sid in Enrolled tuples that refer to it to a special value
null, denoting `unknown’ or `inapplicable’

 What if a “Students” tuple is updated?

Referential Integrity in SQL

 SQL/92 and SQL:1999 support
all 4 options on deletes
and updates

 Default is NO ACTION (i.e.,
delete/update is
rejected)

 CASCADE (also delete all
tuples that refer to the
deleted tuple)

 SET NULL / SET DEFAULT (sets
foreign key value of
referencing tuple)

CREATE TABLE Enrolled

(sid CHAR(20),

cid CHAR(20),
grade CHAR(2),

PRIMARY KEY (sid,cid),

FOREIGN KEY (sid)

REFERENCES Students

ON DELETE CASCADE
ON UPDATE SET DEFAULT)

What does this mean?

Where do ICs Come From?

 ICs are based upon the semantics of the real-world
enterprise that is being described in the
database relations

 We can check a database instance to see if an IC is
violated, but we can NEVER infer that an IC is true by
looking at an instance
 An IC is a statement about all possible instances!
 From the “Students” relation, we know name is not a key,

but the assertion that sid is a key is given to us

 Key and foreign key ICs are the most common; more
general ICs are supported too

Views
 A view is a table whose rows are not explicitly stored but

computed as needed

CREATE VIEW YoungActiveStudents (name, grade)

AS SELECT S.name, E.grade

FROM Students S, Enrolled E

WHERE S.sid = E.sid and S.age<21

 Views can be queried
 Querying YoungActiveStudents would necessitate computing it first then

applying the query on the result as being like any other relation

 Views can be dropped using the DROP VIEW command
 How to handle DROP TABLE if there’s a view on the table?

 DROP TABLE command has options to let the user specify this

Views and Security
 Views can be used to present necessary information, while

hiding details in underlying relation(s)

 If the schema of an old relation is changed, a view can be defined
to represent the old schema

 This allows applications to transparently assume the old schema

 Views can be defined to give a group of users access to just
the information they are allowed to see

 E.g., we can define a view that allows students to see other
students’ names and ages, but not GPAs (also students can be
prevented from accessing the underlying “Students” relation)

Views and Security
 Views can be used to present necessary information, while

hiding details in underlying relation(s)

 If the schema of an old relation is changed, a view can be defined
to represent the old schema

 This allows applications to transparently assume the old schema

 Views can be defined to give a group of users access to just
the information they are allowed to see

 E.g., we can define a view that allows students to see other
students’ names and ages, but not GPAs (also students can be
prevented from accessing the underlying “Students” relation)

Logical Data Independence!

Views and Security
 Views can be used to present necessary information, while

hiding details in underlying relation(s)

 If the schema of an old relation is changed, a view can be defined
to represent the old schema

 This allows applications to transparently assume the old schema

 Views can be defined to give a group of users access to just
the information they are allowed to see

 E.g., we can define a view that allows students to see other
students’ names and ages, but not GPAs (also students can be
prevented from accessing the underlying “Students” relation)

Logical Data Independence!

Security!

Outline

The Relational Model: Basic SQL

Translating ER Diagrams to Tables
and Summary

Query Languages



CREATE TABLE Employees

(ssn CHAR(11),

name CHAR(20),

lot INTEGER,

PRIMARY KEY (ssn))
Employees

ssn
name

lot

Strong Entity Sets to Tables

Relationship Sets to Tables

 In translating a relationship set to a relation, attributes of the
relation must include:

1. Keys for each participating entity set (as foreign keys)
 This set of attributes forms a superkey for the relation

2. All descriptive attributes

 Relationship sets
 1-to-1, 1-to-many, and many-to-many

 Key/Total/Partial participation

M-to-N Relationship Sets to Tables

dname

budgetdid

since

lot

name

ssn

Works_InEmployees Departments

CREATE TABLE Works_In(
ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (ssn, did),
FOREIGN KEY (ssn)

REFERENCES Employees,
FOREIGN KEY (did)

REFERENCES Departments)

1-to-M Relationship Sets to Tables

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments

CREATE TABLE Manages(
ssn CHAR(11),
did INTEGER,
since DATE,

PRIMARY KEY (did),
FOREIGN KEY (ssn)
REFERENCES Employees,
FOREIGN KEY (did)
REFERENCES Departments)

CREATE TABLE Departments(
did INTEGER),
dname CHAR(20),
budget REAL,
PRIMARY KEY (did),
)

Approach 1:
Create separate tables for Manages and Departments

1-to-M Relationship Sets to Tables

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments

CREATE TABLE Dept_Mgr(
ssn CHAR(11),
did INTEGER,
since DATE,
dname CHAR(20),
budget REAL,
PRIMARY KEY (did),
FOREIGN KEY (ssn)
REFERENCES Employees)

Approach 2:
Create a table for only the Departments entity set (i.e., take advantage of the key constraint)

Can ssn take a
null value?

One-Table vs. Two-Table Approaches

 The one-table approach:

(+) Eliminates the need for a separate table for the
involved relationship set (e.g., Manages)

(+) Queries can be answered without combining
information from two relations

(-) Space could be wasted!
 What if several departments have no managers?

 The two-table approach:
 The opposite of the one-table approach!

Translating Relationship Sets with
Participation Constraints

 What does the following ER diagram entail (with respect
to Departments and Managers)?

lot

name dname

budgetdid

since
name dname

budgetdid

since

Manages

since

DepartmentsEmployees

ssn

Works_In

Every did value in Departments table must appear in a row of the
Manages table- if defined- (with a non-null ssn value!)

Translating Relationship Sets with
Participation Constraints

 Here is how to create the “Dept_Mgr” table using the
one-table approach:

Can this be captured using the two-table approach?

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE NO ACTION)

Translating Relationship Sets with
Participation Constraints

 Here is how to create the “Dept_Mgr” table using the
one-table approach:

Would this work?

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE SET NULL)

Translating Weak Entity Sets

 A weak entity set always:

 Participates in a one-to-many binary relationship

 Has a key constraint and total participation

 Which approach is ideal for that?

 The one-table approach

lot

name

agedname

DependentsEmployees

ssn

Policy

cost

Translating Weak Entity Sets
 Here is how to create “Dep_Policy” using the

one-table approach

lot

name

agedname

DependentsEmployees

ssn

Policy

cost

CREATE TABLE Dep_Policy (
dname CHAR(20),
age INTEGER,
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (dname, ssn),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE CASCADE)

Translating ISA Hierarchies to Relations

Contract_Emps

name

ssn

Employees

lot

hourly_wages

ISA

Hourly_Emps

contractid

hours_worked

 Consider the following example:

Translating ISA Hierarchies to Relations

 General approach:
 Create 3 relations: “Employees”,

“Hourly_Emps” and “Contract_Emps”

 How many times do we record an employee?

 What to do on deletions?

 How to retrieve all info about an employee?

EMP (ssn, name, lot)

H_EMP(ssn, h_wg, h_wk) CONTR(ssn, cid)

Contract_Emps

name
ssn

Employees

lot

hourly_wages
ISA

Hourly_Emps

contractid

hours_worked

Translating ISA Hierarchies to Relations

 Alternatively:
 Just create 2 relations “Hourly_Emps”

and “Contract_Emps”

 Each employee must be in one of these
two subclasses

EMP (ssn, name, lot)

H_EMP(ssn, h_wg, h_wk, name, lot) CONTR(ssn, cid, name, lot)

‘black’ is gone!

Contract_Emps

name
ssn

Employees

lot

hourly_wages
ISA

Hourly_Emps

contractid

hours_worked

Duplicate Values!

Translating Aggregations

 Consider the following example:

budgetdidpid

started_on

pbudget

dname

until

DepartmentsProjects Sponsors

Employees

Monitors

lot
name

ssn

since

Translating Aggregations
 Standard approach:

 The Employees, Projects and Departments
entity sets and the Sponsors relationship sets
are translated as described previously

 For the Monitors relationship,
we create a relation with
the following attributes:

 The key attribute of Employees (i.e., ssn)

 The key attributes of Sponsors (i.e., did, pid)

 The descriptive attributes of Monitors (i.e., until)

budgetdidpid

started_on

pbudget

dname

until

DepartmentsProjects Sponsors

Employees

Monitors

lot

name

ssn

since

The Relational Model: A Summary

 A tabular representation of data

 Simple and intuitive, currently one of the most widely used

 Object-relational variant is gaining ground

 Integrity constraints can be specified (by the DBA) based on
application semantics (DBMS checks for violations)

 Two important ICs: primary and foreign keys

 Also: not null, unique

 In addition, we always have domain constraints

 Mapping from ER to Relational is (fairly) straightforward!

ER to Tables - Summary of Basics

 Strong entities:
 Key -> primary key

 (Binary) relationships:
 Get keys from all participating entities:

 1:1 -> either key can be the primary key
 1:N -> the key of the ‘N’ part will be the primary key
 M:N -> both keys will be the primary key

 Weak entities:
 Strong key + partial key -> primary key
 ON DELETE CASCADE

ER to Tables - Summary of Advanced

 Total/Partial participation:
 NOT NULL

 Ternary relationships:
 Get keys from all; decide which one(s) -> primary Key

 Aggregation: like relationships

 ISA:
 3 tables (most general)
 2 tables (‘total coverage’)

Outline

The Relational Model: Basic SQL

Translating ER Diagrams to Tables
and Summary

Query Languages 

Relational Query Languages
 Query languages (QLs) allow manipulating and retrieving

data from databases

 The relational model supports simple and powerful QLs:

 Strong formal foundation based on logic

 High amenability for effective optimizations

 Query Languages != programming languages!

 QLs are not expected to be “Turing complete”

 QLs are not intended to be used for complex calculations

 QLs support easy and efficient access to large datasets

Formal Relational Query Languages
 There are two mathematical Query Languages which form the

basis for commercial languages (e.g., SQL)

 Relational Algebra
 Queries are composed of operators

 Each query describes a step-by-step procedure for computing
the desired answer

 Very useful for representing execution plans

 Relational Calculus
 Queries are subsets of first-order logic

 Queries describe desired answers without specifying how they
will be computed

 A type of non-procedural (or declarative) formal query language

Formal Relational Query Languages
 There are two mathematical Query Languages which form the

basis for commercial languages (e.g., SQL)

 Relational Algebra
 Queries are composed of operators

 Each query describes a step-by-step procedure for computing
the desired answer

 Very useful for representing execution plans

 Relational Calculus
 Queries are subsets of first-order logic

 Queries describe desired answers without specifying how they
will be computed

 A type of non-procedural (or declarative) formal query language

Next Class

Relational Algebra

