
A NoSQL Database - Hive

Dania Abed Rabbou

Hive

• A data-warehousing framework built on top of
Hadoop by Facebook

• Grew from a need to analyze huge volumes of daily

data traffic (~10 TB) generated by Facebook

• Facebook owns the second largest
 Hadoop cluster in the world (~2 PB)

Hadoop & Hive Usage at Facebook
• To produce daily and hourly summaries such as reports

on the growth of users, page views, average time spend
on different pages etc.

• To perform backend processing for site features such as

people you may like and applications you may like.

• To quantify the success of advertisement campaigns and

products.

• To maintain the integrity of the website
 and detect suspicious activity.

Hive vs. RDBMs

1. Schema on read:

Traditionally the table’s schema is
enforced at data load time (schema
on write). Hive enforces it at query
time (a load operation is simply a
quick file move)

2. Updates:

Table updates are only possible by
transforming all the data into a new
table (i.e. no appends)

3. Transactions :

Hive does not support concurrent
accesses to tables and hence
application-level concurrency and
locking mechanisms are needed.

4. Indexes:

Support provided but relatively
immature

HiveQL: Hive’s SQL Dialect

• HiveQL adopts a SQL-like syntax

• HiveQL supports the following datatypes:

Primitive:

Complex:

TINYINT (1 byte),
SMALLINT (2 bytes),
INT (4 bytes),
BIGINT (8 bytes),
DOUBLE,
BOOLEAN,
STRING

ARRAY, MAP, STRUCT

Eg: CREATE TABLE tbl (
 col1 ARRAY<INT>,
 col2 MAP<STRING, INT>,
 col3 STRUCT<a:STRING, b:INT, c:DOUBLE>
);

Hue: Hadoop’s Web Interface

• Hue is an open-source user-friendly web-interface for
Hadoop components (including HDFS, Hive, Pig, etc.)

• Browse to your Hue interface located at:
 <andrew_id>-hdp.qatar.cmu.local:8000
 username: hue
 password: SummerYet

Loading Data into HDFS

• Any datasets needed for loading into tables must be moved to
HDFS

• Load some test datasets into HDFS:
– Navigate to the File Browser
– Create a new directory, say DatasetsSource
– Move into DatasetsSource and upload three csv files

namely customer_details, recharge_details, and
customer_details_with_addresses

Creating Databases

• To create a new Hive database:
– Browse to Beewax (Hive’s UI)
– Click on the Databases tab
– Create a new database, say Customers

Creating Tables

• Create two tables under the database Customers:
– In Beewax, click on the Query Editor tab
– Create tables customer_details & recharge_details

CREATE TABLE IF NOT EXISTS
customer_details
(phone_num STRING,
plan STRING,
date STRING,
status STRING,
balance STRING,
region STRING)
COMMENT "Customer Details"
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ","
STORED AS TEXTFILE;

CREATE TABLE IF NOT EXISTS
recharge_details
(phone_num STRING,
date STRING,
channel STRING,
plan STRING,
amount STRING)
COMMENT "Recharge Details"
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ","
STORED AS TEXTFILE;

Loading Data from HDFS to Tables

• Load data into the two tables:
– In the Query Editor tab, load each dataset

previously uploaded to HDFS into its respective
table

LOAD DATA INPATH "/user/hue/DatasetsSource/customer_details.csv"
OVERWRITE INTO TABLE customer_details;

LOAD DATA INPATH "/user/hue/DatasetsSource/recharge_details.csv"
OVERWRITE INTO TABLE recharge_details;

Browse back to /user/hue/DatasetsSource;
the datasets loaded into tables disappeared!!

Hive moves the datasets to a default
warehousing folder

Deleting Tables

• To delete a table:
– In the Tables tab, choose a table to delete and

click drop

The table including its metadata and data is
deleted!

In other words, the loaded data no longer
exists anywhere!

Creating External Tables

• To control the creation and deletion of data,
use external tables

CREATE EXTERNAL TABLE IF NOT EXISTS
customer_details
(phone_num STRING,
plan STRING,
date STRING,
status STRING,
balance STRING,
region STRING)
COMMENT "Customer Details"
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ","
STORED AS TEXTFILE
LOCATION "/user/hue/LoadedDatasets";

A path were the loaded
dataset will be stored. If
the table is deleted, the

data stays around

Displaying Data in Tables

• Consider the schemas of our two tables:
customer_details(phone_num, plan, date, status, balance, region)

 recharge_details(phone_num, date, channel, plan, amount)

• Display the records in customer_details

SQL:
SELECT * FROM customer_details;

HiveQL:
SELECT * FROM customer_details;

Updating Tables

• Consider the schemas of our two tables:
customer_details(phone_num, plan, date, status, balance, region)

 recharge_details(phone_num, date, channel, plan, amount)

• Let’s update plan 4060 to a recharge amount of 500

SQL:
UPDATE recharge_details
SET amount=500
WHERE plan=4060;

HiveQL:
INSERT OVERWRITE TABLE recharge_details
SELECT phone_num, date, channel, plan,
CASE WHEN plan=4060 THEN 500 ELSE amount END as amount
FROM recharge_details;

The entire table
contents is re-

written

Joining Tables

• Consider the schemas of our two tables:
customer_details(phone_num, plan, date, status, balance, region)

 recharge_details(phone_num, date, channel, plan, amount)

• Let’s display the recharge amount per customer

SQL:
SELECT c.phone_num, r.amount
FROM customers_details c, recharge_details r
WHERE c.phone_num = r.phone_num;

HiveQL:
SELECT customer_details.phone_num, recharge_details.amount
FROM customer_details JOIN recharge_details ON
(customer_details.phone_num = recharge_details.phone_num);

Tables with Complex Datatypes

• Let's add a new field to the customer_details table
called "addresses". This field shall hold a list of
addresses per customer

CREATE TABLE IF NOT EXISTS
customer_details_2
(phone_num STRING,
plan STRING,
date STRING,
status STRING,
balance STRING,
region STRING
addresses ARRAY<STRING>)
COMMENT "Customer Details"
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ","
COLLECTION ITEMS TERMINATED BY “;"
STORED AS TEXTFILE;

LOAD DATA INPATH
"/user/hue/DatasetsSource/
customer_details_with_addresses.csv"
OVERWRITE INTO TABLE customer_details_2;

SELECT * FROM customer_details_2;

SELECT addresses[0] FROM customer_details_2;

Built-In Functions

• Hive provides many built-in functions.
 To list them all:

• To understand the functionality of a function:

• Let’s display those customer records whose
addresses include ‘Qatar’

SHOW FUNCTIONS;

SELECT * FROM customer_details_2
WHERE array_contains(addresses, "Oman");

DESCRIBE FUNCTION array_contains;

Hive’s Additional Features

• Allows User-Defined Functions (UDFs). UDFs can be
written in Java and integrated with Hive.

• Support a new construct (TRANSFORM .. USING ..) to
invoke an external script or program.
– Hive ships invokes the specified program, feeds it data, and

reads data back.
– Useful for pre-processing datasets before loading them

into tables etc.

	A NoSQL Database - Hive
	Hive
	Hadoop & Hive Usage at Facebook
	Hive vs. RDBMs
	HiveQL: Hive’s SQL Dialect
	Hue: Hadoop’s Web Interface
	Loading Data into HDFS
	Creating Databases
	Creating Tables
	Loading Data from HDFS to Tables
	Deleting Tables
	Creating External Tables
	Displaying Data in Tables
	Updating Tables
	Joining Tables
	Tables with Complex Datatypes
	Built-In Functions
	Hive’s Additional Features

