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Hive 

• A data-warehousing framework built on top of 
Hadoop by Facebook 

  
• Grew from a need to analyze huge volumes of daily 

data traffic (~10 TB) generated by Facebook 
 
• Facebook owns the second largest  
    Hadoop cluster in the world (~2 PB) 

 



Hadoop & Hive Usage at Facebook 
• To produce daily and hourly summaries such as reports 

on the growth of users, page views, average time spend 
on different pages etc. 

 
• To perform backend processing for site features such as 

people you may like and applications you may like. 
 
• To quantify the success of advertisement campaigns and 

products. 
 
• To maintain the integrity of the website  
     and detect suspicious activity. 



Hive vs. RDBMs 
 

 
 

1. Schema on read: 
 
Traditionally the table’s schema is 
enforced at data load time (schema 
on write). Hive enforces it at query 
time (a load operation is simply a 
quick file move) 
 

2. Updates: 
 
Table updates are only possible by 
transforming all the data into a new 
table (i.e. no appends) 
 

3. Transactions : 
 
Hive does not support concurrent 
accesses to tables and hence 
application-level concurrency and 
locking mechanisms are needed. 
 

4.   Indexes: 
 
Support provided but relatively 
immature 
 
 



HiveQL: Hive’s SQL Dialect 

• HiveQL adopts a SQL-like syntax  
 

• HiveQL supports the following datatypes: 
 

  
Primitive: 
 

Complex: 
 

TINYINT (1 byte),  
SMALLINT (2 bytes),  
INT (4 bytes),  
BIGINT (8 bytes),   
DOUBLE, 
BOOLEAN,  
STRING  

ARRAY, MAP, STRUCT 
 
Eg: CREATE TABLE tbl ( 
           col1 ARRAY<INT>, 
           col2 MAP<STRING, INT>, 
           col3 STRUCT<a:STRING, b:INT, c:DOUBLE>                      
       ); 
 



Hue: Hadoop’s Web Interface 

• Hue is an open-source user-friendly web-interface for 
Hadoop components (including HDFS, Hive, Pig, etc.) 

 

• Browse to your Hue interface located at: 
 <andrew_id>-hdp.qatar.cmu.local:8000 
 username: hue 
 password: SummerYet 



Loading Data into HDFS 

• Any datasets needed for loading into tables must be moved to 
HDFS 

 

• Load some test datasets into HDFS: 
– Navigate to the File Browser 
– Create a new directory, say DatasetsSource 
– Move into DatasetsSource and upload three csv files 

namely customer_details, recharge_details, and 
customer_details_with_addresses 



Creating Databases 

• To create a new Hive database: 
– Browse to Beewax (Hive’s UI) 
– Click on the Databases tab 
– Create a new database, say Customers 



Creating Tables 

• Create two tables under the database Customers: 
– In Beewax, click on the Query Editor tab 
– Create tables customer_details & recharge_details 
  

CREATE TABLE IF NOT EXISTS 
customer_details 
(phone_num STRING,  
plan STRING,  
date STRING,  
status STRING,  
balance STRING,  
region STRING)  
COMMENT "Customer Details" 
ROW FORMAT DELIMITED   
FIELDS TERMINATED BY ","  
STORED AS TEXTFILE; 
 

 
CREATE TABLE IF NOT EXISTS 
recharge_details 
(phone_num STRING,   
date STRING,  
channel STRING,  
plan STRING,  
amount STRING)  
COMMENT "Recharge Details" 
ROW FORMAT DELIMITED   
FIELDS TERMINATED BY ","  
STORED AS TEXTFILE; 



Loading Data from HDFS to Tables 

• Load data into the two tables: 
– In the Query Editor tab, load each dataset 

previously uploaded to HDFS into its respective 
table 

  
LOAD DATA INPATH "/user/hue/DatasetsSource/customer_details.csv"  
OVERWRITE INTO TABLE customer_details; 
 

 
LOAD DATA INPATH "/user/hue/DatasetsSource/recharge_details.csv"  
OVERWRITE INTO TABLE recharge_details; 
 

Browse back to /user/hue/DatasetsSource; 
the datasets loaded into tables disappeared!! 

Hive moves the datasets to a default 
warehousing folder 



Deleting Tables 

• To delete a table: 
– In the Tables tab, choose a table to delete and 

click drop 
 

The table including its metadata and data is 
deleted! 

In other words, the loaded data no longer 
exists anywhere! 



Creating External Tables 

• To control the creation and deletion of data,           
use external tables 
 

 
CREATE EXTERNAL TABLE IF NOT EXISTS 
customer_details 
(phone_num STRING,  
plan STRING,  
date STRING,  
status STRING,  
balance STRING,  
region STRING)  
COMMENT "Customer Details" 
ROW FORMAT DELIMITED   
FIELDS TERMINATED BY ","  
STORED AS TEXTFILE 
LOCATION "/user/hue/LoadedDatasets"; 
 

A path were the loaded 
dataset will be stored. If 
the table is deleted, the 

data stays around 



Displaying Data in Tables 

• Consider the schemas of our two tables:     
customer_details(phone_num, plan, date, status, balance, region) 

      recharge_details(phone_num, date, channel, plan, amount) 
 

• Display the records in customer_details 

SQL: 
SELECT * FROM customer_details; 

HiveQL: 
SELECT * FROM customer_details; 



Updating Tables 

• Consider the schemas of our two tables:     
customer_details(phone_num, plan, date, status, balance, region) 

      recharge_details(phone_num, date, channel, plan, amount) 
 

• Let’s update plan 4060 to a recharge amount of 500 

SQL: 
UPDATE recharge_details 
SET amount=500 
WHERE plan=4060; 

HiveQL: 
INSERT OVERWRITE TABLE recharge_details 
SELECT phone_num, date, channel, plan,  
CASE WHEN plan=4060 THEN 500 ELSE amount END as amount  
FROM recharge_details; 

The entire table 
contents is re-

written  



Joining Tables 

• Consider the schemas of our two tables:     
customer_details(phone_num, plan, date, status, balance, region) 

      recharge_details(phone_num, date, channel, plan, amount) 
 

• Let’s display the recharge amount per customer 

SQL: 
SELECT c.phone_num, r.amount 
FROM customers_details c, recharge_details r 
WHERE c.phone_num = r.phone_num; 

HiveQL: 
SELECT customer_details.phone_num, recharge_details.amount 
FROM customer_details JOIN recharge_details ON 
(customer_details.phone_num = recharge_details.phone_num); 



Tables with Complex Datatypes 

• Let's add a new field to the customer_details table 
called "addresses". This field shall hold a list of 
addresses per customer 

 
CREATE TABLE IF NOT EXISTS  
customer_details_2 
(phone_num STRING,  
plan STRING,  
date STRING,  
status STRING,  
balance STRING,  
region STRING 
addresses ARRAY<STRING>)  
COMMENT "Customer Details" 
ROW FORMAT DELIMITED   
FIELDS TERMINATED BY ","  
COLLECTION ITEMS TERMINATED BY “;" 
STORED AS TEXTFILE; 
 

 
LOAD DATA INPATH  
"/user/hue/DatasetsSource/ 
customer_details_with_addresses.csv"  
OVERWRITE INTO TABLE customer_details_2; 
 

 
SELECT * FROM customer_details_2; 

 
SELECT addresses[0] FROM customer_details_2; 



Built-In Functions 

• Hive provides many built-in functions.  
    To list them all: 

 
 

• To understand the functionality of a function: 
 
 

• Let’s display those customer records whose 
addresses include ‘Qatar’ 

SHOW FUNCTIONS; 

SELECT * FROM customer_details_2  
WHERE array_contains(addresses, "Oman"); 

DESCRIBE FUNCTION array_contains; 



Hive’s Additional Features 

• Allows User-Defined Functions (UDFs). UDFs can be 
written in Java and integrated with Hive. 
 

• Support a new construct (TRANSFORM .. USING ..) to 
invoke an external script or program.  
– Hive ships invokes the specified program, feeds it data, and 

reads data back.  
– Useful for pre-processing datasets before loading them 

into tables etc. 
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