
Database Applications (15-415)

ER to Relational &
Relational Algebra

Lecture 4, January 20, 2015

Mohammad Hammoud

Today…
 Last Session:

 The relational model

 Today’s Session:
 ER to relational

 Relational algebra
 Relational query languages (in general)

 Relational operators

 Announcements:
 PS1 is due on Thursday, Jan 22 by midnight

 In the next recitation we will practice on translating ER designs into
relational databases

 The recitation time and location will remain the same for the whole
semester (i.e., every Thursday at 4:30PM in Room # 1190)

Outline

Translating ER Diagrams to Tables
and Summary

Query Languages

Relational Operators

CREATE TABLE Employees

(ssn CHAR(11),

name CHAR(20),

lot INTEGER,

PRIMARY KEY (ssn))
Employees

ssn
name

lot

Strong Entity Sets to Tables

Relationship Sets to Tables

 In translating a relationship set to a relation, attributes of the
relation must include:

1. Keys for each participating entity set (as foreign keys)
 This set of attributes forms a superkey for the relation

2. All descriptive attributes

 Relationship sets
 1-to-1, 1-to-many, and many-to-many

 Key/Total/Partial participation

M-to-N Relationship Sets to Tables

dname

budgetdid

since

lot

name

ssn

Works_InEmployees Departments

CREATE TABLE Works_In(
ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (ssn, did),
FOREIGN KEY (ssn)

REFERENCES Employees,
FOREIGN KEY (did)

REFERENCES Departments)

1-to-M Relationship Sets to Tables

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments

CREATE TABLE Manages(
ssn CHAR(11),
did INTEGER,
since DATE,

PRIMARY KEY (did),
FOREIGN KEY (ssn)
REFERENCES Employees,
FOREIGN KEY (did)
REFERENCES Departments)

CREATE TABLE Departments(
did INTEGER),
dname CHAR(20),
budget REAL,
PRIMARY KEY (did),
)

Approach 1:
Create separate tables for Manages and Departments

1-to-M Relationship Sets to Tables

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments

CREATE TABLE Dept_Mgr(
ssn CHAR(11),
did INTEGER,
since DATE,
dname CHAR(20),
budget REAL,
PRIMARY KEY (did),
FOREIGN KEY (ssn)
REFERENCES Employees)

Approach 2:
Create a table for only the Departments entity set (i.e., take advantage of the key constraint)

Can ssn take a
null value?

One-Table vs. Two-Table Approaches

 The one-table approach:

(+) Eliminates the need for a separate table for the
involved relationship set (e.g., Manages)

(+) Queries can be answered without combining
information from two relations

(-) Space could be wasted!
 What if several departments have no managers?

 The two-table approach:
 The opposite of the one-table approach!

Translating Relationship Sets with
Participation Constraints

 What does the following ER diagram entail (with respect
to Departments and Managers)?

lot

name dname

budgetdid

since
name dname

budgetdid

since

Manages

since

DepartmentsEmployees

ssn

Works_In

Every did value in Departments table must appear in a row of the
Manages table- if defined- (with a non-null ssn value!)

Translating Relationship Sets with
Participation Constraints

 Here is how to create the “Dept_Mgr” table using the
one-table approach:

Can this be captured using the two-table approach?

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE NO ACTION)

Translating Relationship Sets with
Participation Constraints

 Here is how to create the “Dept_Mgr” table using the
one-table approach:

Would this work?

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE SET NULL)

Translating Weak Entity Sets

 A weak entity set always:

 Participates in a one-to-many binary relationship

 Has a key constraint and total participation

 Which approach is ideal for that?

 The one-table approach

lot

name

agedname

DependentsEmployees

ssn

Policy

cost

Translating Weak Entity Sets
 Here is how to create “Dep_Policy” using the

one-table approach

lot

name

agedname

DependentsEmployees

ssn

Policy

cost

CREATE TABLE Dep_Policy (
dname CHAR(20),
age INTEGER,
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (dname, ssn),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE CASCADE)

Translating ISA Hierarchies to Relations

Contract_Emps

name

ssn

Employees

lot

hourly_wages

ISA

Hourly_Emps

contractid

hours_worked

 Consider the following example:

Translating ISA Hierarchies to Relations

 General approach:
 Create 3 relations: “Employees”,

“Hourly_Emps” and “Contract_Emps”

 How many times do we record an employee?

 What to do on deletions?

 How to retrieve all info about an employee?

EMP (ssn, name, lot)

H_EMP(ssn, h_wg, h_wk) CONTR(ssn, cid)

Contract_Emps

name
ssn

Employees

lot

hourly_wages
ISA

Hourly_Emps

contractid

hours_worked

Translating ISA Hierarchies to Relations

 Alternatively:
 Just create 2 relations “Hourly_Emps”

and “Contract_Emps”

 Each employee must be in one of these
two subclasses

EMP (ssn, name, lot)

H_EMP(ssn, h_wg, h_wk, name, lot) CONTR(ssn, cid, name, lot)

‘black’ is gone!

Contract_Emps

name
ssn

Employees

lot

hourly_wages
ISA

Hourly_Emps

contractid

hours_worked

Duplicate Values!

Translating Aggregations

 Consider the following example:

budgetdidpid

started_on

pbudget

dname

until

DepartmentsProjects Sponsors

Employees

Monitors

lot
name

ssn

since

Translating Aggregations
 Standard approach:

 The Employees, Projects and Departments
entity sets and the Sponsors relationship sets
are translated as described previously

 For the Monitors relationship,
we create a relation with
the following attributes:

 The key attribute of Employees (i.e., ssn)

 The key attributes of Sponsors (i.e., did, pid)

 The descriptive attributes of Monitors (i.e., until)

budgetdidpid

started_on

pbudget

dname

until

DepartmentsProjects Sponsors

Employees

Monitors

lot

name

ssn

since

The Relational Model: A Summary

 A tabular representation of data

 Simple and intuitive, currently one of the most widely used

 Object-relational variant is gaining ground

 Integrity constraints can be specified (by the DBA) based on
application semantics (DBMS checks for violations)

 Two important ICs: primary and foreign keys

 Also: not null, unique

 In addition, we always have domain constraints

 Mapping from ER to Relational is (fairly) straightforward!

ER to Tables - Summary of Basics

 Strong entities:
 Key -> primary key

 (Binary) relationships:
 Get keys from all participating entities:

 1:1 -> either key can be the primary key
 1:N -> the key of the ‘N’ part will be the primary key
 M:N -> both keys will be the primary key

 Weak entities:
 Strong key + partial key -> primary key
 ON DELETE CASCADE

ER to Tables - Summary of Advanced

 Total/Partial participation:
 NOT NULL

 Ternary relationships:
 Get keys from all; decide which one(s) -> primary Key

 Aggregation: like relationships

 ISA:
 3 tables (most general)
 2 tables (‘total coverage’)

Outline

Translating ER Diagrams to Tables
and Summary

Query Languages

Relational Operators

Relational Query Languages
 Query languages (QLs) allow manipulating and retrieving

data from databases

 The relational model supports simple and powerful QLs:

 Strong formal foundation based on logic

 High amenability for effective optimizations

 Query Languages != programming languages!

 QLs are not expected to be “Turing complete”

 QLs are not intended to be used for complex calculations

 QLs support easy and efficient access to large datasets

Formal Relational Query Languages
 There are two mathematical Query Languages which form the

basis for commercial languages (e.g., SQL)

 Relational Algebra
 Queries are composed of operators

 Each query describes a step-by-step procedure for computing
the desired answer

 Very useful for representing execution plans

 Relational Calculus
 Queries are subsets of first-order logic

 Queries describe desired answers without specifying how they
will be computed

 A type of non-procedural (or declarative) formal query language

Formal Relational Query Languages
 There are two mathematical Query Languages which form the

basis for commercial languages (e.g., SQL)

 Relational Algebra
 Queries are composed of operators

 Each query describes a step-by-step procedure for computing
the desired answer

 Very useful for representing execution plans

 Relational Calculus
 Queries are subsets of first-order logic

 Queries describe desired answers without specifying how they
will be computed

 A type of non-procedural (or declarative) formal query language

This session’s topic

Next session’s topic (very briefly)

Outline

Translating ER Diagrams to Tables
and Summary

Query Languages

Relational Operators

Relational Algebra
 Operators (with notations):

1. Selection ()

2. Projection ()

3. Cross-product ()

4. Set-difference ()

5. Union (∪)

6. Intersection (∩)

7. Join ()

8. Division (÷)

9. Renaming ()

• Each operation returns a relation, hence, operations can
be composed! (i.e., Algebra is “closed”)

Relational Algebra
 Operators (with notations):

1. Selection ()

2. Projection ()

3. Cross-product ()

4. Set-difference ()

5. Union (∪)

6. Intersection (∩)

7. Join ()

8. Division (÷)

9. Renaming ()

• Each operation returns a relation, hence, operations can
be composed! (i.e., Algebra is “closed”)

Basic

Additional, yet
extremely useful!

The Projection Operatation
 Projection:

 “Project out” attributes that are NOT in att-list

 The schema of the output relation contains ONLY the fields in att-list,
with the same names that they had in the input relation

 Example 1:

)(R
listatt

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

)2(
,

S
ratingsname

S2

Input Relation:

sname rating

yuppy 9

lubber 8
guppy 5
rusty 10

Output Relation:

The Projection Operation
 Example 2:

 The projection operator eliminates duplicates!

 Note: real DBMSs typically do not eliminate
duplicates unless explicitly asked for

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S2

Input Relation: Output Relation:

age S()2

age

35.0
55.5

The Selection Operation
 Selection:

 Selects rows that satisfy the selection condition

 The schema of the output relation is identical to the schema of the
input relation

 Example:

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S2

Input Relation: Output Relation:

)(R
condition

)2(
8

S
rating

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

Operator Composition
 The output relation can be the input for another relational

algebra operation! (Operator composition)

 Example:

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S2

Input Relation: Intermediate Relation:

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

sname rating rating

S
,

(())
8

2

sname rating

yuppy 9

rusty 10

Final Output Relation:

The Union Operation
 Union:

 The two input relations must be union-compatible

 Same number of fields

 `Corresponding’ fields have the same type

 The output relation includes all tuples that occur “in either” R or S “or both”

 The schema of the output relation is identical to the schema of R

 Example:

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S2

Input Relations:

Output Relation:

R U S

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

21 SS

S1

The Intersection Operation
 Intersection:

 The two input relations must be union-compatible

 The output relation includes all tuples that occur “in both” R and S

 The schema of the output relation is identical to the schema of R

 Example:

Output Relation:

𝑹 ∩ 𝑺

sid sname rating age

31 lubber 8 55.5
58 rusty 10 35.0

21 SS

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S2

Input Relations:

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1

The Set-Difference Operation
 Set-Difference:

 The two input relations must be union-compatible

 The output relation includes all tuples that occur in R “but not” in S

 The schema of the output relation is identical to the schema of R

 Example:

Output Relation:

𝑹 − 𝑺

sid sname rating age

22 dustin 7 45.0

21 SS

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S2

Input Relations:

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1

The Cross-Product and Renaming
Operations

• Cross Product:
 Each row of R is paired with each row of S

 The schema of the output relation concatenates S1’s and R1’s schemas

 Conflict: R and S might have similar field names

 Solution: Rename fields using the “Renaming Operator”

 Renaming:

 Example:
Output Relation:

𝑹𝑿𝑺

11XRS

)),((EFR

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

Input Relations:

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1

Conflict: Both S1 and R1 have a field called sid

sid bid day

22 101 10/10/96

58 103 11/12/96

R1

The Cross-Product and Renaming
Operations

• Cross Product:
 Each row of R is paired with each row of S

 The schema of the output relation concatenates S1’s and R1’s schemas

 Conflict: R and S might have the same field name

 Solution: Rename fields using the “Renaming Operator”

 Renaming:

 Example:
Output Relation:

𝑹𝑿𝑺

11XRS

)),((EFR

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

Input Relations:

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1

sid bid day

22 101 10/10/96

58 103 11/12/96

R1

)11),25,11((RSsidsidC

Next Class

Relational Algebra (Cont’d)

