
Database Applications (15-415)

ER to Relational &
Relational Algebra

Lecture 4, January 20, 2015

Mohammad Hammoud

Today…
 Last Session:

 The relational model

 Today’s Session:
 ER to relational

 Relational algebra
 Relational query languages (in general)

 Relational operators

 Announcements:
 PS1 is due on Thursday, Jan 22 by midnight

 In the next recitation we will practice on translating ER designs into
relational databases

 The recitation time and location will remain the same for the whole
semester (i.e., every Thursday at 4:30PM in Room # 1190)

Outline

Translating ER Diagrams to Tables
and Summary

Query Languages

Relational Operators



CREATE TABLE Employees

(ssn CHAR(11),

name CHAR(20),

lot INTEGER,

PRIMARY KEY (ssn))
Employees

ssn
name

lot

Strong Entity Sets to Tables

Relationship Sets to Tables

 In translating a relationship set to a relation, attributes of the
relation must include:

1. Keys for each participating entity set (as foreign keys)
 This set of attributes forms a superkey for the relation

2. All descriptive attributes

 Relationship sets
 1-to-1, 1-to-many, and many-to-many

 Key/Total/Partial participation

M-to-N Relationship Sets to Tables

dname

budgetdid

since

lot

name

ssn

Works_InEmployees Departments

CREATE TABLE Works_In(
ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (ssn, did),
FOREIGN KEY (ssn)

REFERENCES Employees,
FOREIGN KEY (did)

REFERENCES Departments)

1-to-M Relationship Sets to Tables

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments

CREATE TABLE Manages(
ssn CHAR(11),
did INTEGER,
since DATE,

PRIMARY KEY (did),
FOREIGN KEY (ssn)
REFERENCES Employees,
FOREIGN KEY (did)
REFERENCES Departments)

CREATE TABLE Departments(
did INTEGER),
dname CHAR(20),
budget REAL,
PRIMARY KEY (did),
)

Approach 1:
Create separate tables for Manages and Departments

1-to-M Relationship Sets to Tables

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments

CREATE TABLE Dept_Mgr(
ssn CHAR(11),
did INTEGER,
since DATE,
dname CHAR(20),
budget REAL,
PRIMARY KEY (did),
FOREIGN KEY (ssn)
REFERENCES Employees)

Approach 2:
Create a table for only the Departments entity set (i.e., take advantage of the key constraint)

Can ssn take a
null value?

One-Table vs. Two-Table Approaches

 The one-table approach:

(+) Eliminates the need for a separate table for the
involved relationship set (e.g., Manages)

(+) Queries can be answered without combining
information from two relations

(-) Space could be wasted!
 What if several departments have no managers?

 The two-table approach:
 The opposite of the one-table approach!

Translating Relationship Sets with
Participation Constraints

 What does the following ER diagram entail (with respect
to Departments and Managers)?

lot

name dname

budgetdid

since
name dname

budgetdid

since

Manages

since

DepartmentsEmployees

ssn

Works_In

Every did value in Departments table must appear in a row of the
Manages table- if defined- (with a non-null ssn value!)

Translating Relationship Sets with
Participation Constraints

 Here is how to create the “Dept_Mgr” table using the
one-table approach:

Can this be captured using the two-table approach?

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE NO ACTION)

Translating Relationship Sets with
Participation Constraints

 Here is how to create the “Dept_Mgr” table using the
one-table approach:

Would this work?

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE SET NULL)

Translating Weak Entity Sets

 A weak entity set always:

 Participates in a one-to-many binary relationship

 Has a key constraint and total participation

 Which approach is ideal for that?

 The one-table approach

lot

name

agedname

DependentsEmployees

ssn

Policy

cost

Translating Weak Entity Sets
 Here is how to create “Dep_Policy” using the

one-table approach

lot

name

agedname

DependentsEmployees

ssn

Policy

cost

CREATE TABLE Dep_Policy (
dname CHAR(20),
age INTEGER,
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (dname, ssn),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE CASCADE)

Translating ISA Hierarchies to Relations

Contract_Emps

name

ssn

Employees

lot

hourly_wages

ISA

Hourly_Emps

contractid

hours_worked

 Consider the following example:

Translating ISA Hierarchies to Relations

 General approach:
 Create 3 relations: “Employees”,

“Hourly_Emps” and “Contract_Emps”

 How many times do we record an employee?

 What to do on deletions?

 How to retrieve all info about an employee?

EMP (ssn, name, lot)

H_EMP(ssn, h_wg, h_wk) CONTR(ssn, cid)

Contract_Emps

name
ssn

Employees

lot

hourly_wages
ISA

Hourly_Emps

contractid

hours_worked

Translating ISA Hierarchies to Relations

 Alternatively:
 Just create 2 relations “Hourly_Emps”

and “Contract_Emps”

 Each employee must be in one of these
two subclasses

EMP (ssn, name, lot)

H_EMP(ssn, h_wg, h_wk, name, lot) CONTR(ssn, cid, name, lot)

‘black’ is gone!

Contract_Emps

name
ssn

Employees

lot

hourly_wages
ISA

Hourly_Emps

contractid

hours_worked

Duplicate Values!

Translating Aggregations

 Consider the following example:

budgetdidpid

started_on

pbudget

dname

until

DepartmentsProjects Sponsors

Employees

Monitors

lot
name

ssn

since

Translating Aggregations
 Standard approach:

 The Employees, Projects and Departments
entity sets and the Sponsors relationship sets
are translated as described previously

 For the Monitors relationship,
we create a relation with
the following attributes:

 The key attribute of Employees (i.e., ssn)

 The key attributes of Sponsors (i.e., did, pid)

 The descriptive attributes of Monitors (i.e., until)

budgetdidpid

started_on

pbudget

dname

until

DepartmentsProjects Sponsors

Employees

Monitors

lot

name

ssn

since

The Relational Model: A Summary

 A tabular representation of data

 Simple and intuitive, currently one of the most widely used

 Object-relational variant is gaining ground

 Integrity constraints can be specified (by the DBA) based on
application semantics (DBMS checks for violations)

 Two important ICs: primary and foreign keys

 Also: not null, unique

 In addition, we always have domain constraints

 Mapping from ER to Relational is (fairly) straightforward!

ER to Tables - Summary of Basics

 Strong entities:
 Key -> primary key

 (Binary) relationships:
 Get keys from all participating entities:

 1:1 -> either key can be the primary key
 1:N -> the key of the ‘N’ part will be the primary key
 M:N -> both keys will be the primary key

 Weak entities:
 Strong key + partial key -> primary key
 ON DELETE CASCADE

ER to Tables - Summary of Advanced

 Total/Partial participation:
 NOT NULL

 Ternary relationships:
 Get keys from all; decide which one(s) -> primary Key

 Aggregation: like relationships

 ISA:
 3 tables (most general)
 2 tables (‘total coverage’)

Outline

Translating ER Diagrams to Tables
and Summary

Query Languages

Relational Operators



Relational Query Languages
 Query languages (QLs) allow manipulating and retrieving

data from databases

 The relational model supports simple and powerful QLs:

 Strong formal foundation based on logic

 High amenability for effective optimizations

 Query Languages != programming languages!

 QLs are not expected to be “Turing complete”

 QLs are not intended to be used for complex calculations

 QLs support easy and efficient access to large datasets

Formal Relational Query Languages
 There are two mathematical Query Languages which form the

basis for commercial languages (e.g., SQL)

 Relational Algebra
 Queries are composed of operators

 Each query describes a step-by-step procedure for computing
the desired answer

 Very useful for representing execution plans

 Relational Calculus
 Queries are subsets of first-order logic

 Queries describe desired answers without specifying how they
will be computed

 A type of non-procedural (or declarative) formal query language

Formal Relational Query Languages
 There are two mathematical Query Languages which form the

basis for commercial languages (e.g., SQL)

 Relational Algebra
 Queries are composed of operators

 Each query describes a step-by-step procedure for computing
the desired answer

 Very useful for representing execution plans

 Relational Calculus
 Queries are subsets of first-order logic

 Queries describe desired answers without specifying how they
will be computed

 A type of non-procedural (or declarative) formal query language

This session’s topic

Next session’s topic (very briefly)

Outline

Translating ER Diagrams to Tables
and Summary

Query Languages

Relational Operators 

Relational Algebra
 Operators (with notations):

1. Selection ()

2. Projection ()

3. Cross-product ()

4. Set-difference ()

5. Union (∪)

6. Intersection (∩)

7. Join ()

8. Division (÷)

9. Renaming ()

• Each operation returns a relation, hence, operations can
be composed! (i.e., Algebra is “closed”)











Relational Algebra
 Operators (with notations):

1. Selection ()

2. Projection ()

3. Cross-product ()

4. Set-difference ()

5. Union (∪)

6. Intersection (∩)

7. Join ()

8. Division (÷)

9. Renaming ()

• Each operation returns a relation, hence, operations can
be composed! (i.e., Algebra is “closed”)











Basic

Additional, yet
extremely useful!

The Projection Operatation
 Projection:

 “Project out” attributes that are NOT in att-list

 The schema of the output relation contains ONLY the fields in att-list,
with the same names that they had in the input relation

 Example 1:

)(R
listatt



sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

)2(
,

S
ratingsname



S2

Input Relation:

sname rating

yuppy 9

lubber 8
guppy 5
rusty 10

Output Relation:

The Projection Operation
 Example 2:

 The projection operator eliminates duplicates!

 Note: real DBMSs typically do not eliminate
duplicates unless explicitly asked for

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S2

Input Relation: Output Relation:

age S()2

age

35.0
55.5

The Selection Operation
 Selection:

 Selects rows that satisfy the selection condition

 The schema of the output relation is identical to the schema of the
input relation

 Example:

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S2

Input Relation: Output Relation:

)(R
condition



)2(
8

S
rating



sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

Operator Composition
 The output relation can be the input for another relational

algebra operation! (Operator composition)

 Example:

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S2

Input Relation: Intermediate Relation:

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

 
sname rating rating

S
,

(())
8

2

sname rating

yuppy 9

rusty 10

Final Output Relation:

The Union Operation
 Union:

 The two input relations must be union-compatible

 Same number of fields

 `Corresponding’ fields have the same type

 The output relation includes all tuples that occur “in either” R or S “or both”

 The schema of the output relation is identical to the schema of R

 Example:

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S2

Input Relations:

Output Relation:

R U S

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

21 SS 

S1

The Intersection Operation
 Intersection:

 The two input relations must be union-compatible

 The output relation includes all tuples that occur “in both” R and S

 The schema of the output relation is identical to the schema of R

 Example:

Output Relation:

𝑹 ∩ 𝑺

sid sname rating age

31 lubber 8 55.5
58 rusty 10 35.0

21 SS 

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S2

Input Relations:

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1

The Set-Difference Operation
 Set-Difference:

 The two input relations must be union-compatible

 The output relation includes all tuples that occur in R “but not” in S

 The schema of the output relation is identical to the schema of R

 Example:

Output Relation:

𝑹 − 𝑺

sid sname rating age

22 dustin 7 45.0

21 SS 

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S2

Input Relations:

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1

The Cross-Product and Renaming
Operations

• Cross Product:
 Each row of R is paired with each row of S

 The schema of the output relation concatenates S1’s and R1’s schemas

 Conflict: R and S might have similar field names

 Solution: Rename fields using the “Renaming Operator”

 Renaming:

 Example:
Output Relation:

𝑹𝑿𝑺

11XRS

)),((EFR

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

Input Relations:

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1

Conflict: Both S1 and R1 have a field called sid

sid bid day

22 101 10/10/96

58 103 11/12/96

R1

The Cross-Product and Renaming
Operations

• Cross Product:
 Each row of R is paired with each row of S

 The schema of the output relation concatenates S1’s and R1’s schemas

 Conflict: R and S might have the same field name

 Solution: Rename fields using the “Renaming Operator”

 Renaming:

 Example:
Output Relation:

𝑹𝑿𝑺

11XRS

)),((EFR

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

Input Relations:

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1

sid bid day

22 101 10/10/96

58 103 11/12/96

R1

)11),25,11((RSsidsidC 

Next Class

Relational Algebra (Cont’d)

