Database Applications (15-415)

DBMS Internals- Part XIV
Lecture 25, April 19, 2015

Mohammad Hammoud

}_I.:_ﬁ?\:ﬂ elia § ___Jg
e Mellon University Qatar

Today...

= Last Session:
= Recovery Management

=" Today’s Session:
= Recovery Management (Cont’d)

= Announcements:

= The final exam is on Monday April 27t, from 8:30AM to
11:30AM in room 1190 (all materials are included- open
book, open notes)

= PS5 (the “last” assignment) is due on Thursday, April 23
by midnight
= P4: Write a survey on SQL vs. NoSQL databases (optional)-
due on Friday, April 24" by midnight
A dgdyelag il =i ol

Carnegie Mellon University Qatar

DBMS Layers

\ Queries /

Query Optimization
and Execution

Relational Operators

————————————

s’

Transaction

!
H Recovery

Lock Manager
Manager

-

— Continue...
o |

Carnegie Mellon University Qatar

Logging and the WAL Property

" |n order to recover from failures, the recovery manager
maintains a /og of all modifications to the database on
stable storage (which should survive crashes)

= After a failure, the DBMS “replays” the log to:
= Redo committed transactions
= Undo uncommitted transactions

" Caveat: A log record describing a change must be written
to stable storage before the change is made
" This is referred to as the Write-Ahead Log (WAL) property

The WAL Protocol

= WAL is the fundamental rule that ensures that a record of
every change to the database is available after a crash

= What if a transaction made a change, committed, then a
crash occurred (i.e., no log is kept “before” the crash)?

" The no-force approach entails that this change may not have
been written to disk before the crash

*= Without a record of this change, there would be no way to
ensure that the committed transaction survives the crash

" Hence, durability cannot be guaranteed!

stable storage before the change is made

[To guarantee durability, a record for every change must be written to J

The WAL Protocol (Cont’d)

= WAL is the fundamental rule that ensures that a record of
every change to the database is available after a crash

= What if a transaction made a change, was progressing, and
a crash occurred?

» The steal approach entails that this change may have been
written to disk before the crash

*= Without a record of this change, there would be no way to
ensure that the transaction can be rolled back (i.e., its
effects would be unseen)

" Hence, atomicity cannot be guaranteed!

To guarantee atomicity, a record for every change must be written to
stable storage before the change is made

Outline

> A Simple Transaction Abort

Checkpointing

> The ARIES Algorithm

A= dgdyglagy gl =i ol

Carnegie Mellon University Qatar

The Log

" The logis a file of records stored in stable storage

= Every log record is given a unique id called the Log
Sequence Number (LSN)

= |LSNs are assigned in a monotonically increasing order
(this is required by the ARIES recovery algorithm- /ater)

" Every page contains the LSN of the most recent log
record, which describes a change to this page

" This is called the pagelSN

The Log (Cont’d)

= The most recent portion of the log, called the log tail,
is kept in main memory and forced periodically
to disk

Log records
flushed to disk

= The DBMS keeps track of the maximum LSN
flushed to disk so far

= This is called the flushedLSN

= As per the WAL protocol, before a
page is written to disk,

pagelLSN < flushedLSN If%i;}[

When to Write Log Records?

= Alogrecord is written after:
= Updating a Page
= An update log record is appended to the log tail

* The pagelSN of the page is set to the LSN of the update
log record

= Committing a Transaction
= A commit log record is appended to the log tail

" The log tail is written to stable storage, up to and including the
commit log record

= Aborting a Transaction
= An abort log record is appended to the log tail
= An undo is initiated for this transaction

When to Write Log Records?

= Alogrecord is written after:

" Ending (Aborting or Committing) a Transaction:
= Additional steps are completed (/ater)
= An end log record is appended to the log tail

= Undoing an Update

= When the action (described by an update log record) is
undone, a compensation log record (CLR) is appended to
the log tail

= CLR describes the action taken to undo the action
recorded in the corresponding update log record

Log Records

"= The fields of a log record are usually as follows:

Can be used to redo and undo the changes!

=
-~
-~
e ——
-
-~
——

! |

= Fields common to all log records: Additional Fields for only the Update Log Records

= Update Log Records

= Commit Log Records

= Abort Log Records

= End Log Records

= Compensation Log Records

Other Recovery-Related Structures

= |n addition to the log, the following two tables are maintained:
= The Transaction Table
" One entry E for each active transaction

= Efields are:
= Transaction ID
= Status, which can be “Progress”, “Committed” or “Aborted”
= JastLSN, which is the most recent log record for this transaction

* The Dirty Page Table
" One entry E” for each dirty page in the buffer pool
" £’ fields are:

= Page ID

= recLSN, which is the LSN of the first log record that caused
the page to become dirty

An Example

P500
P600
transiD Type pagelD Length Offset Before- After-
Image Image
Dirty Page Table T1000 Update P500
T2000 Update P600 3 41 H1J KLM
T2000 Update P500 3 20 GDE QRS
T1000 LOG

T2000

Transaction Table

An Example

P500
P600

Type pagelD | Length Offset | Before- | After-
Image Image
Dirty Page Table T1000 Update P500

T2000 Update P600 3 41 HIJ KLM
T T2000 Update P500 3 20 GDE QRS
T1000 Update P505 3 21 TUV WXY
T1000 LOG
T2000

Transaction Table

An Example

P500
P600
P505

Type pagelD | Length Offset | Before- | After-
Image Image

Dirty Page Tabl A T1000 Update P500
T2000 Update P600 3 41 HIJ KLM
T T2000 Update P500 3 20 GDE QRS
| T1000 Update P505 3 21 TUV WXY
T1000 LOG
T2000

Transaction Table

Outline

> A Simple Transaction Abort

Checkpointing

> The ARIES Algorithm

A= dgdyglagy gl =i ol

Carnegie Mellon University Qatar

A Simple Transaction Abort

" For now, let us consider an “explicit” abort of a
transaction T

" That is, no system crash is involved

" We want to “play back” the log in reverse order,
undoing T's updates

= Step 1: We get the lastLSN of T from the
Transaction table

= Step 2: We lock the corresponding data to be
undone (we can use strict 2PL)

A Simple Transaction Abort (Cont’d)

Step 3: before restoring an old value of a page, we
write a respective Compensation Log Record (CLR)
= CLR has one extra field, that is, undoNextLSN, which
points to the next LSN to undo

= That is, the prevLSN of the record we are
currently undoing

" CLRs are never undone (but they might be Redone)

Step 4: repeat steps 2 and 3 by following a chain of log
records backward via the prevLSN field

Last Step: at the end of UNDO, write an end log record

An Example

[

P500
P600

P505 Type pagelD | Length Before- | After-
Image Image

Let us assume T1000 is aborted!]

Dirty Page Tabl 10 A T1000 Update P500
T2000 Update P600 3 41 H1J KLM
T T2000 Update P500 3 20 GDE QRS
50 | T1000 Update P505 3 21 TUV WXY
TN
T1000 LOG
T2000

Transaction Table

An Example

P500 .
Transaction table
P600

P505 Type pagelD | Length Before- | After-
Image Image

PagelD recLSN
-- [Step 1: Get the lastLSN of T1000 from the]

Dirty Page Tabl 10 A T1000 Update P500
T2000 Update P600 3 41 H1J KLM
T T2000 Update P500 3 20 GDE QRS
50 | T1000 Update P505 3 21 TUV WXY
EETE
T1000 LOG
T2000

Transaction Table

An Example

|

P500
P600

P505 Type pagelD | Length Before- | After-
Image Image

Step 2: Lock P505 }

Dirty Page Tabl 10 A T1000 Update P500
T2000 Update P600 3 41 HIJ KLM
I T2000 Update P500 3 20 GDE QRS
so |[T1000 Update P505 3 21 TUV WXY
o 1
I A e e ,
T1000 LOG
T2000

Transaction Table

An Example

|

P500
P600

P505 Type pagelD | Length Before- | After-
Image Image

Step 3: Write CLR }

Dirty Page Tabl 10 A T1000 Update P500
T2000 Update P600 3 41 HIJ KLM
I T2000 Update P500 3 20 GDE QRS
so |[T1000 Update P505 3 21 TUV WXY
o 1
I A e e ,
T1000 LOG
T2000

Transaction Table

An Example

P500 [Step 3: Write CLR]
P600
P505

Type pagelD | Length Offset | Before- | After-
Image Image

Dirty Page Tabl

10A A T1000 Update P500

T2000 Update P600 3 41 HlJ KLM

11000
T2000

LOG

Transaction Table

An Example

P500 [Step 4: Restore old value “TUV”]
P600
P505

Type pagelD | Length Offset | Before- | After-
Image Image

Dirty Page Tabl

10A A T1000 Update P500

T2000 Update P600 3 41 HlJ KLM

11000
T2000

LOG

Transaction Table

An Example

P500
P600

P505 Type pagelD | Length Offset | Before- | After-
Image Image

Dirty Page Tabl 10AA T1000 Update P500

|

Step 4: Restore old value “TUV”]

T2000 Update P600 3 41 HlJ KLM

11000
T2000

Transaction Table

An Example

P500
P600 \

. Type pagelD Length Offset Before- After-
Dirty Page Table m--- Image || Image

10A A T1000 Update P500

|

Step 4: Restore old value “TUV”]

T2000 Update P600 3 41 HlJ KLM

I T2000 Update P500 3 20 GDE QRS

T1000 Update P505

11000
T2000

Transaction Table

An Example

P500
P600 \

|

Step 5: Lock P500]

pagelD | Length Offset | Before- | After-
Image Image

Dirty Page Table

T1000 Update P505

11000
T2000

Transaction Table

An Example

|

P500
P600 \

Step 6: Write CLR J

pagelD | Length Offset | Before- | After-
Image Image

Dirty Page Table

11000
T2000

Transaction Table

An Example

P500
P600 \

|

Step 7: Restore old value “ABC” J

pagelD | Length Offset | Before- | After-
Image Image

Dirty Page Table

11000
T2000

Transaction Table

An Example

P500 [Step 7: Restore old value “ABC” J
P600 \
. prevLSN pagelD | Length Offset | Before- | After-
Dirty Page Table Image | Image
pNTIO0 Upde PS03 m M | oFF |
T2000 Update P600 3 41 HIJ KLM
I T2000 Update P500 3 20 GDE QRS

50 T1000 Update P505

An Example

|

P500
P600 ::\\

Step 7: Restore old value “ABC” J

prevLSN | transIiD Type pagelD | Length Offset | Before- | After-

Dirty Page Table Image | Image
pNTIO0 Upde PS03 m M | oFF |
T2000 Update P600 3 41 HIJ KLM
I T2000 Update P500 3 20 GDE QRS

50 T1000 Update P505

An Example

P500
P600

prevLSN Type pagelD | Length Before- After-
Dirty Page Table -m--- Image | _Image

A T1000 Update P500

|

Step 8: Write an end log record J

T2000 Update P600 3 41 HlJ KLM

I T2000 Update P500 3 20 GDE QRS

50 T1000 Update P505

An Example

P500
P600

prevLSN Type pagelD | Length Before- After-
Dirty Page Table -m--- Image | _Image

A T1000 Update P500

|

Step 8: Write an end log record J

T2000 Update P600 3 41 HlJ KLM

I T2000 Update P500 3 20 GDE QRS

50 T1000 Update P505

Outline

> A Simple Transaction Abort

Checkpointing \/

> The ARIES Algorithm

A= dgdyglagy gl =i ol

Carnegie Mellon University Qatar

Checkpointing

= To reduce the amount of work to do during recovery, DBMSs
typically take checkpoints

= A checkpoint is like a snapshot of a DBMS state

= A checkpoint can be taken by writing to the log:
= A begin_checkpoint record
= This indicates the start of the checkpoint
= An end_checkpoint record
= This indicates the end of the checkpoint
= |t includes the contents of the Transaction and the Dirty Page tables

= A master record
= This contains the LSN of the begin_checkpoint record

Outline

> A Simple Transaction Abort

Checkpointing

v

A= dgdyglagy gl =i ol

Carnegie Mellon University Qatar

> The ARIES Algorithm

Recovering From a System Crash: ARIES

= We will study the ARIES algorithm for recovering from
system crashes

= ARIES is designed to work with a steal, no-force approach

= When the recovery manager is invoked after a crash, restart
proceeds in three phases:

= Analysis
= Redo
= Undo

Recovering From a System Crash: ARIES

= The Analysis Phase:

= |dentifies dirty pages in the buffer
pool and active transactions at the
time of the crash

= The Redo Phase:

= Redoes all actions

= The Undo Phase:

= Undoes the actions of transactions
that were active and did not commit

Oldest log

Undo
rec. of Xact
active at crash
Smallest .
recLSN in Redo

dirty page =
table after -
Analysis

= Analysis

Last chkpt —'— l

CRASH

ARIES: The Analysis Phase

" The Analysis phase encompasses two main steps:

= Step 1: Reconstruct state (i.e., Dirty Page and
Transaction tables) via the end _checkpoint record,
after the most recent begin_checkpoint record

= Step 2: Scan the log in the forward direction, starting
after the checkpoint

= If an end log record is encountered

= Remove the corresponding transaction from the
Transaction table

ARIES: The Analysis Phase

"= The Analysis phase encompasses two main steps:
= Step 2 (Cont’d):
= |[f any other record is encountered

= Add the corresponding transaction to the
Transaction table (if it is not already there)

= Set [astLSN to the LSN of the record

= Set status to C for committed transactions, or to U (i.e.,
Undo), otherwise

* When an update log record is encountered

" |f the recorded page, P, is not in the Dirty Page table

= Add P to the Dirty Page table and set its recLSN to the
LSN of the log record

ARIES: The Analysis Phase

= At the end of the Analysis phase:

= The Transaction table contains an “accurate” list of
all transactions that were active at the time of
the crash

" The Dirty Page table contains all pages that were
dirty at the time of the crash

" These pages may contain some pages that were
written to disk (why?)— Not a Problem!

ARIES: The Redo Phase

" During the Redo phase, ARIES reapplies the updates of
“all” transactions (i.e., committed and aborted)

* This paradigm is referred to as Repeating History

* The Redo phase scans forward until the end of the log,
and redoes every action unless:

= The affected page is not in the Dirty Page table

= The affected page is in the Dirty Page table, but its recLSN >
the current record’s LSN

= The pageLSN of the affected page >= the current record’s LSN |

,/
td
’/
’

Wouldn’t checking this be enough?

ARIES: The Redo Phase

" During the Redo phase, ARIES reapplies the updates of
“all” transactions (i.e., committed and aborted)

* This paradigm is referred to as Repeating History

* The Redo phase scans forward until the end of the log,
and redoes every action unless:

= The affected page is not in the Dirty Page table

= The affected page is in the Dirty Page table, but its recLSN >
the current record’s LSN

= The pagelSN of the affected page >=the current record’s LSN |

YES, but it requires retrieving the page from the disk, thus made last!

ARIES: The Redo Phase

" |f the logged action must be redone:
" The logged action is reapplied

" The pagelLSN on the page is set to the LSN of the
redone log record

= No additional record is written at this time!

ARIES: The Undo Phase

" This phase will undo the actions of all transactions that
were active before the crash

= These transactions are referred to as loser transactions
and were identified by the Analysis phase

" The Undo phase:

= Considers the set of lastLSN values for all loser
transactions

= This is denoted as the ToUndo set

= Repeatedly chooses the largest (i.e., the most recent) LSN
value in ToUndo and processes it, until ToUndo is empty

ARIES: The Undo Phase

" |n particular, the Undo phase proceeds as follows:

Repeat:
Choose largest LSN among ToUndo
If this LSN is a CLR and undoNextLSN==NULL
Write an End record for this Xact
If this LSN is a CLR, and undoNextLSN != NULL
Add undonextLSN to ToUndo
Else this LSN is an update
Undo the update
Write a CLR
Add prevLSN to ToUndo
Until ToUndo is empty

An Example

LSN LOG

00,05 —-— begin_checkpoint, end_checkpoint
10 =- update: T1 writes P5 <~ prevLSN
20 _._ update T2 writes 3 undoNextL SN
30 — T1 abort

40,45 — CLR: Undo T1 LSN 10, T1|End
50 —-— update: T3 writes P1
60 — update: T2 writes P5

98 CRASH, RESTART
70 == CLR: Undo T2 LSN 60
80,85 —— CLR: Undo T3 LSN 50, T3 end
8 CRASH, RESTART
90 — CLR: Undo T2 LSN 20, T2 end

Additional Crash Issues

= What happens if the system crashes while “Restart” is in the
Analysis phase?
= All the work done is lost!
" On asecond Restart, the Analysis phase starts afresh

= What happens if the system crashes while “Restart” is in the
Redo phase?

= Restart starts again with the Analysis phase then the
Redo phase

= But, some of the changes made during Redo may have been
written to disk

" The update log records that were done the first time
around will not be redone a second time (why?)

Summary

Recovery Manager guarantees Atomicity & Durability

WAL is used to allow STEAL/NO-FORCE without
sacrificing correctness

LSNs identify log records; linked into backwards chains
per transaction (via prevLSN)

pagelLSNs allow comparisons of data pages and
log records

Summary

" Checkpointing: A quick way to limit the amount of
log to scan on recovery

= Recovery works in 3 phases:

= Analysis: Forward from checkpoint
= Redo: Forward from oldest recLSN

= Undo: Backward from end to first LSN of oldest
transaction alive at crash

= Upon Undo, write CLRs

" Redo “repeats history”: Simplifies the logic!

Next Class

e dgdsglagy gle=iaaly
Carnegie Mellon University Qatar

