Database Applications (15-415)

DBMS Internals- Part XI|
Lecture 23, April 14, 2015

Mohammad Hammoud

}_I.:_ﬁ?\:ﬂ elia § ___Jg
e Mellon University Qatar



Today...

= | ast Two Sessions:

= DBMS Internals- Part X
* Transaction Management

= Today’s Session:
*= Transaction Management (Cont’d)

= Announcements:
= PS5 (the “last” assignment) is now posted. It is due on
Thursday, April 231

= The final exam is on Monday April 27t, from 8:30AM to
11:30AM in room 1190 (all materials are included- open

book, open notes)

Carnegie Mellon University Qatar



DBMS Layers

\ Queries /

Query Optimization
and Execution

Relational Operators

o

7’

Transaction

Files and Access Methods I
Recovery

Buffer Management

Lock Manager

Manager

Disk Space Management

Continue... —
o ]

Carnegie Mellon University Qatar



Outline

Lock Conversions \/

> Dealing with Deadlocks

Dynamic Databases and the Phantom
Problem

Concurrency Control in B+ Trees

A= dgdyglagy gl =i ol

Carnegie Mellon University Qatar



Performance of Locking

Locking comes with delays mainly from blocking

Usually, the first few transactions are unlikely to conflict

" Throughput can rise in proportion to the number of active
transactions

As more transactions are executed concurrently, the
likelihood of blocking increases

" Throughput will increase more slowly with the number of
active transactions

There comes a point when adding another active
transaction will actually decrease throughput

* When the system thrashes!



Performance of Locking (Cont’d)

>

Throughput

Thrashing
: >

# of Active Transactions

" |f a database begins to thrash, the DBA should
reduce the number of active transactions

= Empirically, thrashing is seen to occur when
30% of active transactions are blocked!



Lock Conversions

" A transaction may need to change the lock it
already acquires on an object

*" From Shared to Exclusive
" This is referred to as lock upgrade

" From Exclusive to Shared
" This is referred to as lock downgrade

" For example, an SQL update statement might
acquire a Shared lock on each row, R, in a table
and if R satisfies the condition (in the WHERE
clause), an Exclusive lock must be obtained for R




Lock Upgrades

" Alock upgrade request from a transaction T on object O
must be handled specially by:

= Granting an Exclusive lock to T immediately if no other
transaction holds a lock on O

= Otherwise, queuing T at the front of O’s queue
(i.e., Tis favored)

= Tis favored because it already holds a Shared lock on O

= Queuing T in front of another transaction T’ that holds no lock
on O, but requested an Exclusive lock on O averts a deadlock!

= However, if Tand T’ hold a Shared lock on O, and both request
upgrades to an Exclusive lock, a deadlock will arise regardless!



Lock Downgrades

" Lock upgrades can be entirely avoided by obtaining
Exclusive locks initially, and downgrade them to Shared
locks once needed

= Would this violate any 2PL requirement?

* On the surface yes; since the transaction (say, T) may need to
upgrade later

" This is a special case as T conservatively obtained an Exclusive
lock, and did nothing but read the object that it downgraded

= 2PL can be safely extended to allow lock downgrades in the
growing phase, provided that the transaction has not
modified the object




Outline

Lock Conversions

> Dealing with Deadlocks

Dynamic Databases and the Phantom
Problem

Concurrency Control in B+ Trees

A= dgdyglagy gl =i ol

Carnegie Mellon University Qatar



Deadlock Detection

The lock manager maintains a structure called a waits-for
graph to periodically detect deadlocks

In a waits-for graph:
* The nodes correspond to active transactions

" There is an edge from Ti to Tj if and only if Ti is waiting for Tj
to release a lock

The lock manager adds and removes edges to and from a
waits-for graph when it queues and grants lock requests,
respectively

A deadlock is detected when a cycle in the waits-for graph
is found



Deadlock Detection (Cont’d)

" The following schedule is free of deadlocks:

Tl T2 T3 T4
S(A)
R(A)

|7 X(B) =_

< W)

S(B)
JEAI(90W
1 RO
X(C)
X(B)
No cycles; hence, no deadlocks!

A schedule without a deadlock The Corresponding Waits-For Graph*

*The nodes correspond to active transactions and there is an edge from Ti to Tj if and only
if Ti is waiting for Tj to release a lock



Deadlock Detection (Cont’d)

* The following schedule is NOT free of deadlocks:

T4
X(B) : Z

T1 T2 T3
S(A)r,
R(A) |
|2X(B) &,
~ | w(B)
S(B) \\\ \\
y 17 (O~
. R(C)
Xy |
X(A)

A schedule with a deadlock

The Corresponding Waits-For Graph*

*The nodes correspond to active transactions and there is an edge from Ti to Tj if and only
if Ti is waiting for Tj to release a lock



Deadlock Detection (Cont’d)

* The following schedule is NOT free of deadlocks:

T1 T2 T3 T4
S(A)r,
R(A)

}X(B) =

| wey |

S ( B) \\\ \\\\
y 17 S(C)~
T RGP
X(c) |
X(B)

xi\A)

Cycle detected; hence, a deadlock!

A schedule with a deadlock The Corresponding Waits-For Graph*

*The nodes correspond to active transactions and there is an edge from Ti to Tj if and only
if Ti is waiting for Tj to release a lock



Resolving Deadlocks

= A deadlock is resolved by aborting a transaction that is
on a cycle and releasing its locks

* This allows some of the waiting transactions to proceed

= The choice of which transaction to abort can be made
using different criteria:

* The one with the fewest locks
= Or the one that has done the least work
= Or the one that is farthest from completion (more accurate)

= Caveat: a transaction that was aborted in the past,
should be favored subsequently and not aborted upon
a deadlock detection!



Deadlock Prevention

» Studies indicate that deadlocks are relatively infrequent
and detection-based schemes work well in practice

" However, if there is a high level of contention for locks,
prevention-based schemes could perform better

= Deadlocks can be averted by giving each transaction a
priority and ensuring that lower-priority transactions are
not allowed to wait for higher-priority ones
(or vice versa)



Deadlock Prevention (Cont’d)

" One way to assign priorities is to give each
transaction a timestamp when it is started

" Thus, the lower the timestamp, the higher is the
transaction’s priority

" |f a transaction Ti requests a lock and a transaction
Tj holds a conflicting lock, the lock manager can
use one of the following policies:

= Wound-Wait: If Ti has higher priority, Tj is aborted,;
otherwise, Ti waits

= Wait-Die: If Ti has higher priority, it is allowed to wait;
otherwise, it is aborted



Reissuing Timestamps

= A subtle point is that we must ensure that no

transaction is perennially aborted because it never had
a sufficiently high priority

= To avoid that, when a transaction is aborted and

restarted, it should be given the same timestamp it
had originally

" This policy is referred to as reissuing timestamps

= Reissuing timestamps ensures that each transaction

will eventually become the oldest and accordingly get
all the locks it requires!



Outline

Lock Conversions

> Dealing with Deadlocks

Dynamic Databases and the Phantom ‘/
Problem

Concurrency Control in B+ Trees

A= dgdyglagy gl =i ol

Carnegie Mellon University Qatar



Dynamic Databases

= Thus far, we have assumed static databases

" We now relax that condition and assume dynamic
databases (i.e., databases that grow and shrink)

" To study locking protocols for dynamic databases,
we consider the following:
= A Sailors relation S

" Atransaction T1 which only scans S to find the oldest
Sailor for specific rating levels

= A transaction T2 which updates Sailor while T1 is running



A Possible Scenario

= Assume a scenario whereby the actions of T1 and T2 are
interleaved as follows:

T1 identifies all pages containing Sailors with rating 1 (say,
pages A and B)

T1 finds the age of the oldest Sailor with rating 1 (say, 71)

T2 inserts a new Sailor with rating 1 and age 96 (perhaps
into page € which does not contain any Sailor with rating 1)

T2 locates the page containing the oldest Sailor with rating 2
(say, page D) and deletes this Sailor (whose age is, say, 80)

T2 commits

T1 identifies all pages containing Sailors with rating 2 (say
pages D and E), and finds the age of the oldest such Sailor
(which is, say, 63)

T1 commits



A Possible Scenario (Cont’d)

= We can apply strict 2PL to the given interleaved actions
of T1 and T2 as follows (S = Shared; X = Exclusive):

T1 T2 T1 T2
R(A) S(A)
R(B) R(A)
R(C) S(B)
W(C) R(B)
R(D) E(C)
W(D) R(C)
Commit W(C)
R(D) E(D)
R(E) R(D)
Commit W(D)
Commit
S(D)
R(D)
S(E)
R(E)
Commit




A Possible Scenario (Cont’d)

= We can apply strict 2PL to the given interleaved actions
of T1 and T2 as follows (S = Shared; X = Exclusive):

Tl T2

R(A)

R(B)
R(C)
W(C)
R(D)
W(D)
Commit

R(D)

R(E)

Commit

>

A tuple with
rating 1 and
age 71is
returned

A tuple with
rating 2 and
age 63 is
returned

A tuple with rating 1
and age 96 is inserted

Tl T2
S(A)
R(A)
S(B)
R(B)
"""""" E(C)
R(C)
w(C)
ED)
R(D)
| W((D)___
Commit-':I
S(D) v
R(D)
S(E)
R(E)

A tuple with rating 2
and age 80 is deleted




A Possible Scenario (Cont’d)

" One possible serial execution of T1 and T2 is as follows
(S = Shared; X = Exclusive):

T1 T2 T1 T2
R(A) S(A)
R(B) R(A)
R(D) S(B)
&> e, R(B) ____
Commit A tuple with :((B;
R(C) rating 1 and
w(C) : S(E)
R(D) age/1is _RE)
W(D) returned ':" Commit
Commit i E(C)
i R(C) I
A t.uple with ' | A tuple with rating 1
rating 2 and | W(C)__;
: . E(D) and age 96 is inserted
age 80 is R(D)
returnea | W(D)__j | Atuple with rating 2
Commit | 3nd age 80 is deleted




A Possible Scenario (Cont’d)

= Another possible serial execution of T1 and T2 is as
follows (S = Shared; X = Exclusive):

Tl T2

R(C)
W(C)
R(D)
W(D)
Commit

R(A)

R(B)

R(D)

R(E)

Commit

>

A tuple with
rating 1 and
age 96 is
returned

A tuple with
rating 2 and
age 63 is
returned

) &

A tuple with rating 1
and age 96 is inserted

A tuple with rating 2
and age 80 is deleted

T1 T2
E(C)
R(C)
W(C)
o
R(D)
: W(D)
S(A] Commit |
| R(A)
i S(B)
! R(B)
i S(C)
| R(C)
Us(D)
R(D)
S(E)
R(E)

Commit




A Possible Scenario: Revisit

= We can apply strict 2PL to the given interleaved actions
of T1 and T2 as follows (S = Shared; X = Exclusive):

T1 T2 Tl T2
R(A) S(A)
R(B) R(A)
we W) REB)
R(D) A tuple with E(C)
w(D) _ rating 1 and \%CC)
Commit age 71is L : :
R(D) roturned E(D) A tuple with rating 1
R(E) R(D) and age 96 is inserted
Commit __V_V_(_D_)___.,
A tuple with S(D) Commit i
This schedule is not rating 2 and R(D) A tuple with rating 2
identical to any serial age 63 s S(E) and age 80 is deleted
execution of T1 and T2! returned e RE)
Commit




The Phantom Problem

The problem is that T1 assumes that it has locked “all” the
pages which contain Sailors records with rating 1

This assumption is violated when T2 inserts a new Sailor
record with rating 1 on a different page

Hence, locking pages at any given time does not prevent
new phantom records from being added on other pages!

* This is commonly known as the “Phantom Problem”

The Phantom Problem is caused, not because of a flaw in
the Strict 2PL protocol, but because of T1’s unrealistic
assumptions



How Can We Solve the
Phantom Problem?

" |f there is no index on rating and all pages in Sailors
must be scanned, T1 should somehow ensure that no
new pages are inserted to the Sailors relation

® This has to do with the locking granularity

" |f there is an index on rating, T1 can lock the index
entries and the data pages which involve the targeted
ratings, and accordingly prevent new insertions

= This technique is known as index locking



Outline

Lock Conversions

> Dealing with Deadlocks

Dynamic Databases and the Phantom
Problem

Concurrency Control in B+ Trees ‘/

A= dgdyglagy gl =i ol

Carnegie Mellon University Qatar



Concurrency Control in B+ Trees

= We focus on applying concurrency control on B+ trees for:
= Searches

= |nsertions/deletions

= Three observations provide the necessary insights to apply
a locking protocol for B+ trees:

1. The higher levels of a B+ tree only direct searches

2. Searches never go back up a B+ tree when they proceed
along paths to desired leafs

3. Insertions/deletions can cause splits/merges, which might
propagate all the way up, from leafs to the root of a B+ tree



A Locking Strategy for Searches

= A search should obtain Shared locks on nodes, starting at the root
and proceeding along the path to the desired leaf

= Since searches never go back up the tree, a lock on a node can be
released as soon as a lock on a child node is obtained

= Example: Search for data entry 38*
m i Obtain a Shared Lock

s

“ el EEEErl EEREEE ECErSE T




A Locking Strategy for Searches

= A search should obtain Shared locks on nodes, starting at the root
and proceeding along the path to the desired leaf

= Since searches never go back up the tree, a lock on a node can be
released as soon as a lock on a child node is obtained

= Example: Search for data entry 38*

' Obtain a Shared Lock

T e

“ el EEEErl EEREEE ECErSE T




A Locking Strategy for Searches

= A search should obtain Shared locks on nodes, starting at the root
and proceeding along the path to the desired leaf

= Since searches never go back up the tree, a lock on a node can be
released as soon as a lock on a child node is obtained

= Example: Search for data entry 38*

Release the Shared Lock

—————————————————

Ii Obtain a Shared Lock

———————————————

iy S B

_20* | 22+ QW 23* |24* | 35* |36* W 38* |41+ QW 44t [




A Locking Strategy for Searches

= A search should obtain Shared locks on nodes, starting at the root
and proceeding along the path to the desired leaf

= Since searches never go back up the tree, a lock on a node can be
released as soon as a lock on a child node is obtained

= Example: Search for data entry 38*

o | 20

Obtain a

“ el EEEErl EEREEE ECErSE T




A Locking Strategy for Searches

= A search should obtain Shared locks on nodes, starting at the root
and proceeding along the path to the desired leaf

= Since searches never go back up the tree, a lock on a node can be
released as soon as a lock on a child node is obtained

= Example: Search for data entry 38*

o | 20

Release the Shared Lock

------ s Obtain a

“ el EEEErl EEREEE ECErSE T




A Locking Strategy for Searches

= A search should obtain Shared locks on nodes, starting at the root
and proceeding along the path to the desired leaf

= Since searches never go back up the tree, a lock on a node can be
released as soon as a lock on a child node is obtained

= Example: Search for data entry 38*

RS




A Locking Strategy for Searches

= A search should obtain Shared locks on nodes, starting at the root
and proceeding along the path to the desired leaf

= Since searches never go back up the tree, a lock on a node can be
released as soon as a lock on a child node is obtained

= Example: Search for data entry 38*
| 35
Release the Shared Lock




A Locking Strategy for Searches

= A search should obtain Shared locks on nodes, starting at the root
and proceeding along the path to the desired leaf

= Since searches never go back up the tree, a lock on a node can be
released as soon as a lock on a child node is obtained

= Example: Search for data entry 38*
m I Keep Locked Until
the Result is Returned




Towards A Locking Strategy for
Insertions/Deletions

A conservative strategy for an insertion/deletion would be
to obtain Exclusive locks on all the nodes along the path to
the desired leaf

* This is because splits/merges can propagate all the way up
to the root

However, once a child is locked, its lock will be needed
only if a split/merge propagates back to it

When won'’t a split propagate back to a node?
* When the node’s child is not full

When won’t a merge propagate back to a node?
= When the node’s child is more than half-empty



Lock-Coupling: A Locking Strategy for
Insertions/Deletions (Contd)

= A strategy, known as lock-coupling, for insertions/deletions
can be pursued as follows:

= Start at the root and go down, obtaining Shared locks as

needed (an Exclusive lock is only obtained for the desired
leaf node)

= Once a child is locked, check if it is safe
= |f the child is safe, release all locks on ancestors

" A nodeis safe when changes will not propagate up beyond it

= A safe node for an insertion is the one that is not full

= A safe node for a deletion is the one that is more than
half-empty




Lock-Coupling: An Example

" |nsert data entry 45%:

AT AN




Lock-Coupling: An Example

" |nsert data entry 45%:

1
i Obtain a Shared Lock

AT AN




Lock-Coupling: An Example

" |nsert data entry 45%:

S N S N R S Sy

I Release the Shared Lock Since the
i Child is Not Full

1
i Obtain a Shared Lock

AT AN




Lock-Coupling: An Example

" |nsert data entry 45%:

-——

Shared Lock




Lock-Coupling: An Example

" |nsert data entry 45%:

-——

I Keep the Shared Lock
i Since the Child is Full

‘—————————— - -y

Shared Lock




Lock-Coupling: An Example

" |nsert data entry 45%:

Obtain an
Exclusive Lock



Lock-Coupling: An Example

" |nsert data entry 45%:

Release the Shared Lock
Since the Child is Not Full

Obtain an
Exclusive Lock



Lock-Coupling: An Example

" |nsert data entry 45%:

I Release the Shared Lock
i Since the Child is Not Locked

________________

Exclusive Lock
PN N N PN P T, NS —— .

/4

1 1
1 1
1 1
1 1
\ J

L R g




Lock-Coupling: An Example

" |nsert data entry 45%:
—
/ El{
/lﬂf-l /nrml\
PN PN PN PN Py et “’ ----- \

/4

1 1
1 1
1 1
1 1
\ J

L R g




Lock-Coupling: Another Example

" |nsert data entry 25%:

AT AN




Lock-Coupling: Another Example

" |nsert data entry 25%:

1
i Obtain a Shared Lock

AT AN




Lock-Coupling: Another Example

" |nsert data entry 25%:

S N S N R S Sy

I Release the Shared Lock Since the
i Child is Not Full

_________________

1
i Obtain a Shared Lock

AT AN




Lock-Coupling: Another Example

" |nsert data entry 25%:

Shared Lock




Lock-Coupling: Another Example

" |nsert data entry 25%:

! Release the Shared Lock
1
I Since the Child is Not Full

Shared Lock




Lock-Coupling: Another Example

* Insert data entry 25*:
—
/Bl!
IR /nrm\
Obtain an
-----_Ers'_u_s've Lock




Lock-Coupling: Another Example

" |nsert data entry 25%:
Request an Upgrade on the Lock
Since the Child is Full
Obtain an
Excluswe Lock




Lock-Coupling: Another Example

" |nsert data entry 25%:

What if another transaction has a
Shared lock on this node and wants
to access the locked child node?

(o ) “ n
1
1
1
Obtain an
Excluswe Lock
___________ /\

I
1
1
J

AN EEE NN NN EEN EEE EEE EEN EEN EEE BN BN S



Lock-Coupling: Another Example

" |nsert data entry 25%:
—
/lﬂlgl
A DEADLOCK Will Arise/ !
""""""" 6%1;'.?. an
______E)_(El_u_swe Lock




Lock-Coupling: Another Example

" Insert data entry 25%*:
—
B
Otherwise...
— /“l'“'\
Insert 25* and
________ : IE‘E'W"gate




Summary

" There are several lock-based concurrency control
schemes (e.g., 2PL & Strict 2PL)

" The lock manager keeps track of the locks issued

" Deadlocks can arise, but they can either be
detected and resolved, or initially prevented

= With dynamic databases, naive locking strategies
may expose the phantom problem

= Resolving this problem has to do with the
locking granularity



Summary

" /ndex locking is common, and affects
performance significantly

* Needed when accessing records via an index

* Needed for locking logical sets of records (index
locking/predicate locking)

" Tree-structured Indexes:
= A straightforward use of 2PL is very inefficient

= Bayer-Schkolnick illustrates a high potential for
performance improvement



Next Class

\ Queries /

Query Optimization
and Execution

Relational Operators

\
\:
1
Manager :
1
1
Lock i
Manager i
/”

—

oo |

Carnegie Mellon University Qatar



