
Database Applications (15-415)

DBMS Internals- Part X
Lecture 21, April 7, 2015

Mohammad Hammoud

Today…
 Last Session:

 DBMS Internals- Part IX
 Query Optimization

 Today’s Session:

 DBMS Internals- Part X
 Query Optimization (Cont’d)

 Announcements:

 PS4 is due on Sunday, April 12 by midnight

 Quiz II is on Thursday, April 9th (all concepts covered
after the midterm are included)

DBMS Layers

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Continue…

Outline

A Brief Primer on Query Optimization

Query Evaluation Plans

Relational Algebra Equivalences

Estimating Plan Costs

Enumerating Plans

Nested Sub-Queries



Last
Session

Estimating the Cost of a Plan

 The cost of a plan can be estimated by:

1. Estimating the cost of each operation in the
plan tree

 Already covered last week (e.g., costs of various
join algorithms)

2. Estimating the size of the result set of each
operation in the plan tree

 The output size and order of a child node affects the
cost of its parent node

How can we estimate result sizes?

Estimating Result Sizes

 Consider a query block, QB, of the form:

 What is the maximum number of tuples generated by QB?

 NTuples (R1) × NTuples (R2) × …. × NTuples(Rn)

 Every term in the WHERE clause, however, eliminates some
of the possible resultant tuples

 A reduction factor can be associated with each term

SELECT attribute list

FROM R1, R2, …., Rn

WHERE term 1 AND ... AND term k

Estimating Result Sizes (Cont’d)

 Consider a query block, QB, of the form:

 The reduction factor (RF) associated with each term reflects
the impact of the term in reducing the result size

 Final (estimated) result cardinality = [NTuples (R1) × ... ×
NTuples(Rn)] × [RF(term 1) ×... × RF(term k)]
 Implicit assumptions: terms are independent and distribution

is uniform!

SELECT attribute list

FROM R1, R2, …., Rn

WHERE term 1 AND ... AND term k

But, how can we compute reduction factors?

Approximating Reduction Factors

 Reduction factors (RFs) can be approximated using the
statistics available in the DBMS’s catalog

 For different forms of terms, RF is computed differently

 Form 1: Column = Value

 RF = 1/NKeys(I), if there is
an index I on Column

 Otherwise, RF = 1/10

grade

count

AF
NKeys(I)

E.g., grade = ‘B’

Approximating Reduction Factors (Cont’d)

 For different forms of terms, RF is computed differently

 Form 2: Column 1 = Column 2

 RF = 1/MAX(NKeys(I1), NKeys(I2)), if there are indices I1
and I2 on Column 1 and Column 2, respectively

 Or: RF = 1/NKeys(I), if there is only 1 index on Column 1 or
Column 2

 Or: RF = 1/10, if neither Column 1 nor Column 2 has
an index

 Form 3: Column IN (List of Values)

 RF equals to RF of “Column = Value” (i.e., Form 1) × # of
elements in the List of Values

Approximating Reduction Factors (Cont’d)

 For different forms of terms, RF is computed differently

 Form 4: Column > Value

 RF = (High(I) – Value)/
(High(I) – Low(I)), if there
is an index I on Column

 Otherwise, RF equals to
any fraction < 1/2

grade

count

AF

E.g., grade >= ‘C’

Improved Statistics: Histograms

 Estimates can be improved considerably by maintaining
more detailed statistics known as histograms

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Distribution D

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Uniform Distribution Approximating D

Improved Statistics: Histograms

 Estimates can be improved considerably by maintaining
more detailed statistics known as histograms

Distribution D

What is the result size of term value > 13?

9 tuples

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Improved Statistics: Histograms

 Estimates can be improved considerably by maintaining
more detailed statistics known as histograms

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Uniform Distribution Approximating D
What is the (estimated) result size of

term value > 13?

(1/15 × 45) = 3 tuples

Clearly, this is
inaccurate!

Improved Statistics: Histograms

 We can do better if we divide the range of values into
sub-ranges called buckets

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket 1

Count=8

Bucket 2

Count=4

Bucket 3

Count=15

Bucket 4

Count=3

Bucket 5

Count=15

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket 1

Count=9

Bucket 2

Count=10

Bucket 3

Count=10

Bucket 4

Count=7

Bucket 5

Count=9

Equidepth histogramEquiwidth histogram

Uniform distribution per a bucket

Equal # of tuples per a bucket

Improved Statistics: Histograms

 We can do better if we divide the range of values into
sub-ranges called buckets

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket 1

Count=8

Bucket 2

Count=4

Bucket 3

Count=15

Bucket 4

Count=3

Bucket 5

Count=15

Equiwidth histogram

 The selected range = 1/3 of the range for bucket 5
 Bucket 5 represents a total of 15 tuples
 Estimated size = 1/3 × 15 = 5 tuples

Better than
regular

histograms!

What is the (estimated) result size of
term value > 13?

Uniform distribution per a bucket

Improved Statistics: Histograms

 We can do better if we divide the range of values into
sub-ranges called buckets

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket 1

Count=9

Bucket 2

Count=10

Bucket 3

Count=10

Bucket 4

Count=7

Bucket 5

Count=9

Equidepth histogram
What is the (estimated) result size of

term value > 13?

 The selected range = 100% of the range for
bucket 5

 Bucket 5 represents a total of 9 tuples
 Estimated size = 1 × 9 = 9 tuples

Better than
equiwidth

histograms!

Equal # of tuples per a bucket

Why?

Improved Statistics: Histograms

 We can do better if we divide the range of values into
sub-ranges called buckets

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket 1

Count=9

Bucket 2

Count=10

Bucket 3

Count=10

Bucket 4

Count=7

Bucket 5

Count=9

Equidepth histogram
Because, buckets with very
frequently occurring values

contain fewer slots; hence, the
uniform distribution assumption

is applied to a smaller range
of values!

What about buckets with mostly
infrequent values?

They are approximated
less accurately!

Equal # of tuples per a bucket

Outline

A Brief Primer on Query Optimization

Query Evaluation Plans

Relational Algebra Equivalences

Estimating Plan Costs

Enumerating Plans

Nested Sub-Queries



Enumerating Execution Plans

 Consider a query Q =

 Here are 3 plans that are equivalent:

DCBA 

C DBABA

C

D

BA

C

D

Linear Trees A Bushy Tree

Left-Deep Tree

Enumerating Execution Plans

 Consider a query Q =

 Here are 3 plans that are equivalent:

DCBA 

C DBABA

C

D

BA

C

D



Why?

Enumerating Execution Plans (Cont’d)
 There are two main reasons for concentrating only on left-

deep plans:
 As the number of joins increases, the number of plans

increases rapidly; hence, it becomes necessary to prune the
space of alternative plans

 Left-deep trees allow us to generate all fully pipelined plans

 Clearly, by adding details to left-deep trees (e.g., the join
algorithm per each join), several query plans can
be obtained

 The query optimizer enumerates all possible left-deep
plans using typically a dynamic programming approach
(later), estimates the cost of each plan, and selects the one
with the lowest cost!

Enumerating Execution Plans (Cont’d)

 In particular, the query optimizer enumerates:

1. All possible left-deep orderings

2. The different possible ways for evaluating each operator

3. The different access paths for each relation

 Assume the following query Q:

SELECT S.sname, B.bname, R.day

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid

Enumerating Execution Plans (Cont’d)

 In particular, the query optimizer enumerates:

1. All possible left-deep orderings

RS

B

SR

B

BR

S

RB

S

BS

Rx

SB

Rx

Enumerating Execution Plans (Cont’d)

 In particular, the query optimizer enumerates:

1. All possible left-deep orderings

RS

B

BS

R

SR

B

BR

S

RB

S
x

SB

Rx

Prune plans with cross-products immediately!

Enumerating Execution Plans (Cont’d)

 In particular, the query optimizer enumerates:

1. All possible left-deep orderings

2. The different possible ways for evaluating each operator

RS

B

RS

B

HJ

HJ

RS

B

HJ

NLJ

RS

B

NLJ

HJ

RS

B

NLJ

NLJ

Enumerating Execution Plans (Cont’d)

 In particular, the query optimizer enumerates:

1. All possible left-deep orderings

2. The different possible ways for evaluating each operator

RS

B

RS

B

HJ

HJ

RS

B

HJ

NLJ

RS

B

NLJ

HJ

RS

B

NLJ

NLJ

+ do same for
the 3 other plans

Enumerating Execution Plans (Cont’d)

 In particular, the query optimizer enumerates:

1. All possible left-deep orderings

2. The different possible ways for evaluating each operator

3. The different access paths for each relation

RS

B

NLJ

NLJ

RS

B

NLJ

NLJ

(heap scan)

(heap scan)

(heap scan)

Enumerating Execution Plans (Cont’d)

 In particular, the query optimizer enumerates:

1. All possible left-deep orderings

2. The different possible ways for evaluating each operator

3. The different access paths for each relation

+ do same for
the 3 other plans

RS

B

NLJ

NLJ

RS

B

NLJ

NLJ

(heap scan)

(heap scan)

(heap scan)

Enumerating Execution Plans (Cont’d)

 In particular, the query optimizer enumerates:

1. All possible left-deep orderings

2. The different possible ways for evaluating each operator

3. The different access paths for each relation

Subsequently, estimate the cost of each plan using
statistics collected and stored at the system catalog!

Let us now study a dynamic programming algorithm
to effectively enumerate and estimate cost plans

Towards a Dynamic Programming Algorithm

 There are two main cases to consider:
 CASE I: Single-Relation Queries

 CASE II: Multiple-Relation Queries

 CASE I: Single-Relation Queries
 Only selection, projection, grouping and aggregate operations

are involved (i.e., no joins)

 Every available access path is considered and the one with the
least estimated cost is selected

 The different operations are carried out together
 E.g., if an index is used for a selection, projection can be done

for each retrieved tuple, and the resulting tuples can be
pipelined into an aggregate operation (if any)

CASE I: Single-Relation Queries-
An Example

 Consider the following SQL query Q:

 Q can be expressed in a relational algebra tree as follows:

SELECT S.rating, COUNT (*)

FROM Sailors S

WHERE S.rating > 5 AND S.age = 20
GROUP BY S.rating

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

CASE I: Single-Relation Queries-
An Example

 Consider the following SQL query Q:

 How can Q be evaluated?

 Apply CASE I:

 Every available access path for Sailors is considered
and the one with the least estimated cost is selected

 The selection and projection operations are carried
out together

SELECT S.rating, COUNT (*)

FROM Sailors S

WHERE S.rating > 5 AND S.age = 20
GROUP BY S.rating

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

CASE I: Single-Relation Queries-
An Example

 Consider the following SQL query Q:

 What would be the cost of we assume a file scan for sailors?

SELECT S.rating, COUNT (*)

FROM Sailors S

WHERE S.rating > 5 AND S.age = 20
GROUP BY S.rating

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(Scan; Write
to Temp T1)

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a file scan for sailors?

(Scan; Write
to Temp T1)

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

NPages(Sailors)

×
Size of T1 tuple/Size of Sailors tuple

Reduction Factor (RF) of S.age

×

NPages(Sailors)

+

Reduction Factor (RF) of S.rating

×

CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a file scan for sailors?

(Scan; Write
to Temp T1)

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

Term of Form 4
(default < 1/2)

Term of Form 1
(default = 1/10)

NPages(Sailors)

×
Size of T1 tuple/Size of Sailors tuple

Reduction Factor (RF) of S.age

×

NPages(Sailors)

+

Reduction Factor (RF) of S.rating

×

CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a file scan for sailors?

(Scan; Write
to Temp T1)

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

Term of Form 4
(default < 1/2)

Term of Form 1
(default = 1/10)

NPages(Sailors) = 500 I/Os

×
Size of T1 tuple/Size of Sailors tuple = 0.25

Reduction Factor (RF) of S.age = 0.1

×

NPages(Sailors) = 500 I/Os

+

Reduction Factor (RF) of S.rating = 0.2

×

502.5 I/Os

=

CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a file scan for sailors?

(Scan; Write
to Temp T1)

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

3 × NPages(T1) = 3 × 2.5 = 7.5 I/Os

CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a file scan for sailors?

(Scan; Write
to Temp T1)

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

7.5 I/Os

502.5 I/Os

510 I/Os

CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a clustered index on
rating with A(1)?

(Index; Write
to Temp T1)

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly) Cost of retrieving the index entries

+
Cost of retrieving the corresponding

Sailors tuples

Cost of writing out T1

+

CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a clustered index on
rating with A(1)?

(Index; Write
to Temp T1)

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

Term of Form 4

RF = (High(I) – Value)/
(High(I) – Low(I)) = (10 – 5)/10 = 0.5

Term of Form 1. Can be applied
to each retrieved tuple.

Cost of retrieving the index entries

+
Cost of retrieving the corresponding

Sailors tuples

Cost of writing out T1

+

CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a clustered index on
rating with A(1)?

(Index; Write
to Temp T1)

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

Term of Form 4

RF = (High(I) – Value)/
(High(I) – Low(I)) = (10 – 5)/10 = 0.5

Term of Form 1. Can be applied
to each retrieved tuple.

Cost of retrieving the index entries

+
Cost of retrieving the corresponding

Sailors tuples

= 0.5 × 0.1 × NPages(I)
= 0.5 × 0.1 × 600
= 30 I/Os

=

CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a clustered index on
rating with A(1)?

(Index; Write
to Temp T1)

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

Term of Form 4

RF = (High(I) – Value)/
(High(I) – Low(I)) = (10 – 5)/10 = 0.5

Term of Form 1. Can be applied
to each retrieved tuple.

Cost of retrieving the index entries

+
Cost of retrieving the corresponding

Sailors tuples

Cost of writing out T1

+

2 × 30 = 60 I/Os

=

CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a clustered index on
rating with A(1)?

(Index; Write
to Temp T1)

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

2 × 30 = 60 I/Os

~7.5 I/Os

67.5 I/Os (as opposed to
510 I/Os with a file scan)

Towards a Dynamic Programming Algorithm

 There are two main cases to consider:

 CASE I: Single-Relation Queries

 CASE II: Multiple-Relation Queries

 CASE II: Multiple-Relation Queries

 Only consider left-deep plans

 Apply a dynamic programming algorithm

Enumeration of Left-Deep Plans Using
Dynamic Programming

 Enumerate using N passes (if N relations joined):
 Pass 1:

 For each relation, enumerate all plans (all 1-relation plans)
 Retain the cheapest plan per each relation

 Pass 2:
 Enumerate all 2-relation plans by considering each 1-relation

plan retained in Pass 1 (as outer) and successively every other
relation (as inner)

 Retain the cheapest plan per each 1-relation plan
 Pass N:

 Enumerate all N-relation plans by considering each (N-1)-
relation plan retained in Pass N-1 (as outer) and successively
every other relation (as inner)

 Retain the cheapest plan per each (N-1)-relation plan
 Pick the cheapest N-relation plan

Enumeration of Left-Deep Plans Using
Dynamic Programming (Cont’d)

 An N-1 way plan is not combined with an additional
relation unless:
 There is a join condition between them

 All predicates in the WHERE clause have been used up

 ORDER BY, GROUP BY, and aggregate functions are
handled as a final step, using either an `interestingly
ordered’ plan or an additional sorting operator

 Despite of pruning the plan space, this approach is still
exponential in the # of tables

CASE II: Multiple-Relation Queries-
An Example

 Consider the following relational algebra tree:

 Assume the following:

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

- Sailors:
- B+ tree on rating
- Hash on sid

- Reserves:
- B+ tree on bid

CASE II: Multiple-Relation Queries-
An Example

 Pass 1:

 Sailors:

 B+ tree matches rating>5,
and is probably the cheapest

 If this selection is expected to
retrieve a lot of tuples, and
the index is un-clustered,
file scan might be cheaper!

 Reserves: B+ tree on bid matches
bid=500; probably the cheapest

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

- Sailors:
- B+ tree on rating
- Hash on sid

- Reserves:
- B+ tree on bid

CASE II: Multiple-Relation Queries-
An Example

 Pass 2:

 Consider each plan retained from
Pass 1 as the outer, and join it effectively
with every other relation

 E.g., Reserves as outer:

 Hash index can be used to get
Sailors tuples that satisfy
sid = outer tuple’s sid value

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

- Sailors:
- B+ tree on rating
- Hash on sid

- Reserves:
- B+ tree on bid

Outline

A Brief Primer on Query Optimization

Query Evaluation Plans

Relational Algebra Equivalences

Estimating Plan Costs

Enumerating Plans

Nested Sub-Queries 

Nested Sub-queries

 Consider the following nested query Q1:

 The nested sub-query can be evaluated just once,
yielding a single value V

 V can be incorporated into the top-level query as if it
had been part of the original statement of Q1

SELECT S.sname

FROM Sailors S

WHERE S.rating =
(SELECT MAX (S2.rating)

FROM Sailors S2)

Nested Sub-queries

 Now, consider the following nested query Q2:

 The nested sub-query can still be evaluated just once, but it
will yield a collection of sids

 Every sid value in Sailors must be checked whether it exists in
the collection of sids returned by the nested sub-query
 This entails a join, and the full range of join methods can be explored!

SELECT S.sname

FROM Sailors S

WHERE EXISTS
(SELECT R.sid

FROM Reserves R

WHERE R.bid=103)

Nested Sub-queries
 Now, consider another nested query Q3:

 Q3 is correlated; hence, we “cannot” evaluate the sub-query
just once!

 In this case, the typical evaluation strategy is to evaluate the
nested sub-query for each tuple of Sailors

SELECT S.sname

FROM Sailors S

WHERE EXISTS
(SELECT *
FROM Reserves R

WHERE R.bid=103

AND R.sid=S.sid)

Summary
 Query optimization is a crucial task in relational DBMSs

 We must understand query optimization in order to understand
the performance impact of a given database design (relations,
indexes) on a workload (set of queries)

 Two parts to optimizing a query:

1. Consider a set of alternative plans (e.g., using dynamic
programming)

 Apply selections/projections as early as possible

 Prune search space; typically, keep left-deep plans only

2. Estimate the cost of each plan that is considered

 Must estimate size of result and cost of each tree node

 Key issues: Statistics, indexes, operator implementations

Next Class

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

