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Today…
 Last Session:

 DBMS Internals- Part IX
 Query Optimization

 Today’s Session:

 DBMS Internals- Part X
 Query Optimization (Cont’d)

 Announcements:

 PS4 is due on Sunday, April 12 by midnight

 Quiz II is on Thursday, April 9th (all concepts covered
after the midterm are included)



DBMS Layers

Query Optimization
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Estimating the Cost of a Plan

 The cost of a plan can be estimated by:

1. Estimating the cost of each operation in the 
plan tree

 Already covered last week (e.g., costs of various 
join algorithms)

2. Estimating the size of the result set of each 
operation in the plan tree

 The output size and order of a child node affects the 
cost of its parent node 

How can we estimate result sizes?



Estimating Result Sizes

 Consider a query block, QB, of the form:

 What is the maximum number of tuples generated by QB?

 NTuples (R1) × NTuples (R2) × …. × NTuples(Rn)

 Every term in the WHERE clause, however, eliminates some 
of the possible resultant tuples

 A reduction factor can be associated with each term

SELECT attribute list

FROM R1, R2, …., Rn

WHERE term 1 AND ... AND term k



Estimating Result Sizes (Cont’d)

 Consider a query block, QB, of the form:

 The reduction factor (RF) associated with each term reflects 
the impact of the term in reducing the result size

 Final (estimated) result cardinality = [NTuples (R1) × ... ×
NTuples(Rn)] × [ RF(term 1) ×... × RF(term k)]
 Implicit assumptions: terms are independent and distribution 

is uniform!

SELECT attribute list

FROM R1, R2, …., Rn

WHERE term 1 AND ... AND term k

But, how can we compute reduction factors?



Approximating Reduction Factors

 Reduction factors (RFs) can be approximated using the 
statistics available in the DBMS’s catalog

 For different forms of terms, RF is computed differently

 Form 1: Column = Value

 RF = 1/NKeys(I), if there is 
an index I on Column

 Otherwise, RF = 1/10

grade

count

AF
NKeys(I)

E.g., grade = ‘B’



Approximating Reduction Factors (Cont’d)

 For different forms of terms, RF is computed differently

 Form 2: Column 1 = Column 2

 RF = 1/MAX(NKeys(I1), NKeys(I2)), if there are indices I1
and I2 on Column 1 and Column 2, respectively

 Or: RF = 1/NKeys(I), if there is only 1 index on Column 1 or 
Column 2

 Or: RF = 1/10, if neither Column 1 nor Column 2 has 
an index

 Form 3: Column IN (List of Values)

 RF equals to RF of “Column = Value” (i.e., Form 1) × # of 
elements in the List of Values 



Approximating Reduction Factors (Cont’d)

 For different forms of terms, RF is computed differently

 Form 4: Column > Value

 RF = (High(I) – Value)/
(High(I) – Low(I)), if there 
is an index I on Column

 Otherwise, RF equals to 
any fraction < 1/2

grade

count

AF

E.g., grade >= ‘C’



Improved Statistics: Histograms

 Estimates can be improved considerably by maintaining 
more detailed statistics known as histograms
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Improved Statistics: Histograms

 Estimates can be improved considerably by maintaining 
more detailed statistics known as histograms

Distribution D

What is the result size of term value > 13?

9 tuples
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Improved Statistics: Histograms

 Estimates can be improved considerably by maintaining 
more detailed statistics known as histograms
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Uniform Distribution Approximating D
What is the (estimated) result size of 

term value > 13?

(1/15 × 45) = 3 tuples

Clearly, this is 
inaccurate!



Improved Statistics: Histograms

 We can do better if we divide the range of values into 
sub-ranges called buckets
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Improved Statistics: Histograms

 We can do better if we divide the range of values into 
sub-ranges called buckets
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 The selected range = 1/3 of the range for bucket 5
 Bucket 5 represents a total of 15 tuples
 Estimated size = 1/3 × 15 = 5 tuples

Better than 
regular 

histograms!

What is the (estimated) result size of 
term value > 13?

Uniform distribution per a bucket



Improved Statistics: Histograms

 We can do better if we divide the range of values into 
sub-ranges called buckets
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What is the (estimated) result size of 

term value > 13?

 The selected range = 100% of the range for 
bucket 5

 Bucket 5 represents a total of 9 tuples
 Estimated size = 1 × 9 = 9 tuples

Better than 
equiwidth

histograms!

Equal # of tuples per a bucket

Why?



Improved Statistics: Histograms

 We can do better if we divide the range of values into 
sub-ranges called buckets
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Because, buckets with very 
frequently occurring values 

contain fewer slots; hence, the 
uniform distribution assumption 

is applied to a smaller range 
of values!

What about buckets with mostly
infrequent values?

They are approximated 
less accurately!

Equal # of tuples per a bucket
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Enumerating Execution Plans

 Consider a query Q = 

 Here are 3 plans that are equivalent:

DCBA 

C DBABA

C

D

BA

C

D

Linear Trees A Bushy Tree

Left-Deep Tree



Enumerating Execution Plans

 Consider a query Q = 

 Here are 3 plans that are equivalent:

DCBA 

C DBABA

C

D

BA

C

D



Why?



Enumerating Execution Plans (Cont’d)
 There are two main reasons for concentrating only on left-

deep plans:
 As the number of joins increases, the number of plans 

increases rapidly; hence, it becomes necessary to prune the 
space of alternative plans

 Left-deep trees allow us to generate all fully pipelined plans

 Clearly, by adding details to left-deep trees (e.g., the join 
algorithm per each join), several query plans can 
be obtained

 The query optimizer enumerates all possible left-deep 
plans using typically a dynamic programming approach 
(later), estimates the cost of each plan, and selects the one 
with the lowest cost!



Enumerating Execution Plans (Cont’d)

 In particular, the query optimizer enumerates:

1. All possible left-deep orderings

2. The different possible ways for evaluating each operator

3. The different access paths for each relation

 Assume the following query Q:

SELECT S.sname, B.bname, R.day

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid



Enumerating Execution Plans (Cont’d)

 In particular, the query optimizer enumerates:

1. All possible left-deep orderings

RS
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B
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S
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Enumerating Execution Plans (Cont’d)

 In particular, the query optimizer enumerates:

1. All possible left-deep orderings

RS

B

BS

R

SR

B

BR

S

RB

S
x

SB

Rx

Prune plans with cross-products immediately!



Enumerating Execution Plans (Cont’d)

 In particular, the query optimizer enumerates:

1. All possible left-deep orderings

2. The different possible ways for evaluating each operator
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Enumerating Execution Plans (Cont’d)

 In particular, the query optimizer enumerates:

1. All possible left-deep orderings

2. The different possible ways for evaluating each operator
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+ do same for 
the 3 other plans



Enumerating Execution Plans (Cont’d)

 In particular, the query optimizer enumerates:

1. All possible left-deep orderings

2. The different possible ways for evaluating each operator

3. The different access paths for each relation
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(heap scan)

(heap scan)

(heap scan)



Enumerating Execution Plans (Cont’d)

 In particular, the query optimizer enumerates:

1. All possible left-deep orderings

2. The different possible ways for evaluating each operator

3. The different access paths for each relation

+ do same for 
the 3 other plans

RS

B

NLJ

NLJ

RS

B

NLJ

NLJ

(heap scan)

(heap scan)

(heap scan)



Enumerating Execution Plans (Cont’d)

 In particular, the query optimizer enumerates:

1. All possible left-deep orderings

2. The different possible ways for evaluating each operator

3. The different access paths for each relation

Subsequently, estimate the cost of each plan using 
statistics collected and stored at the system catalog!

Let us now study a dynamic programming algorithm 
to effectively enumerate and estimate cost plans



Towards a Dynamic Programming Algorithm

 There are two main cases to consider:
 CASE I: Single-Relation Queries

 CASE II: Multiple-Relation Queries

 CASE I: Single-Relation Queries
 Only selection, projection, grouping and aggregate operations 

are involved (i.e., no joins)

 Every available access path is considered and the one with the 
least estimated cost is selected

 The different operations are carried out together
 E.g., if an index is used for a selection, projection can be done 

for each retrieved tuple, and the resulting tuples can be 
pipelined into an aggregate operation (if any)



CASE I: Single-Relation Queries-
An Example

 Consider the following SQL query Q:

 Q can be expressed in a relational algebra tree as follows:

SELECT S.rating, COUNT (*)

FROM Sailors S

WHERE S.rating > 5 AND S.age = 20
GROUP BY S.rating

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating



CASE I: Single-Relation Queries-
An Example

 Consider the following SQL query Q:

 How can Q be evaluated?

 Apply CASE I:

 Every available access path for Sailors is considered 
and the one with the least estimated cost is selected

 The selection and projection operations are carried 
out together

SELECT S.rating, COUNT (*)

FROM Sailors S

WHERE S.rating > 5 AND S.age = 20
GROUP BY S.rating

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating



CASE I: Single-Relation Queries-
An Example

 Consider the following SQL query Q:

 What would be the cost of we assume a file scan for sailors?

SELECT S.rating, COUNT (*)

FROM Sailors S

WHERE S.rating > 5 AND S.age = 20
GROUP BY S.rating

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(Scan; Write
to Temp T1)

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)



CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a file scan for sailors?

(Scan; Write
to Temp T1)

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

NPages(Sailors)

×
Size of T1 tuple/Size of Sailors tuple

Reduction Factor (RF) of S.age

×

NPages(Sailors)

+

Reduction Factor (RF) of S.rating

×



CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a file scan for sailors?

(Scan; Write
to Temp T1)

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

Term of Form 4
(default < 1/2)

Term of Form 1
(default = 1/10)

NPages(Sailors)

×
Size of T1 tuple/Size of Sailors tuple

Reduction Factor (RF) of S.age

×

NPages(Sailors)

+

Reduction Factor (RF) of S.rating

×



CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a file scan for sailors?

(Scan; Write
to Temp T1)

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

Term of Form 4
(default < 1/2)

Term of Form 1
(default = 1/10)

NPages(Sailors) = 500 I/Os

×
Size of T1 tuple/Size of Sailors tuple = 0.25

Reduction Factor (RF) of S.age = 0.1

×

NPages(Sailors) = 500 I/Os

+

Reduction Factor (RF) of S.rating = 0.2

×

502.5 I/Os

= 



CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a file scan for sailors?

(Scan; Write
to Temp T1)

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

3 × NPages(T1) = 3 × 2.5 = 7.5 I/Os



CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a file scan for sailors?

(Scan; Write
to Temp T1)

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

7.5 I/Os

502.5 I/Os

510 I/Os



CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a clustered index on 
rating with A(1)?

(Index; Write
to Temp T1)

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly) Cost of retrieving the index entries

+
Cost of retrieving the corresponding

Sailors tuples

Cost of writing out T1

+



CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a clustered index on 
rating with A(1)?

(Index; Write
to Temp T1)

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

Term of Form 4

RF = (High(I) – Value)/
(High(I) – Low(I)) = (10 – 5)/10 = 0.5

Term of Form 1. Can be applied 
to each retrieved tuple.

Cost of retrieving the index entries

+
Cost of retrieving the corresponding

Sailors tuples

Cost of writing out T1

+



CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a clustered index on 
rating with A(1)?

(Index; Write
to Temp T1)

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

Term of Form 4

RF = (High(I) – Value)/
(High(I) – Low(I)) = (10 – 5)/10 = 0.5

Term of Form 1. Can be applied 
to each retrieved tuple.

Cost of retrieving the index entries

+
Cost of retrieving the corresponding

Sailors tuples

= 0.5 × 0.1 × NPages(I)
= 0.5 × 0.1 × 600
= 30 I/Os

= 



CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a clustered index on 
rating with A(1)?

(Index; Write
to Temp T1)

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

Term of Form 4

RF = (High(I) – Value)/
(High(I) – Low(I)) = (10 – 5)/10 = 0.5

Term of Form 1. Can be applied 
to each retrieved tuple.

Cost of retrieving the index entries

+
Cost of retrieving the corresponding

Sailors tuples

Cost of writing out T1

+

2 × 30 = 60 I/Os

= 



CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a clustered index on 
rating with A(1)?

(Index; Write
to Temp T1)

Sailors

age = 20rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

2 × 30 = 60 I/Os

~7.5 I/Os

67.5 I/Os (as opposed to 
510 I/Os with a file scan)



Towards a Dynamic Programming Algorithm

 There are two main cases to consider:

 CASE I: Single-Relation Queries

 CASE II: Multiple-Relation Queries

 CASE II: Multiple-Relation Queries

 Only consider left-deep plans

 Apply a dynamic programming algorithm



Enumeration of Left-Deep Plans Using 
Dynamic Programming

 Enumerate using N passes (if N relations joined):
 Pass 1:

 For each relation, enumerate all plans (all 1-relation plans)
 Retain the cheapest plan per each relation

 Pass 2: 
 Enumerate all 2-relation plans by considering each 1-relation 

plan retained in Pass 1 (as outer) and successively every other 
relation (as inner)

 Retain the cheapest plan per each 1-relation plan
 Pass N:  

 Enumerate all N-relation plans by considering each (N-1)-
relation plan retained in Pass N-1 (as outer) and successively 
every other relation (as inner)

 Retain the cheapest plan per each (N-1)-relation plan
 Pick the cheapest N-relation plan 



Enumeration of Left-Deep Plans Using 
Dynamic Programming (Cont’d)

 An N-1 way plan is not combined with an additional 
relation unless:
 There is a join condition between them

 All predicates in the WHERE clause have been used up

 ORDER BY, GROUP BY, and aggregate functions are
handled as a final step, using either an `interestingly 
ordered’ plan or an additional sorting operator

 Despite of pruning the plan space, this approach is still 
exponential in the # of tables



CASE II: Multiple-Relation Queries-
An Example

 Consider the following relational algebra tree:

 Assume the following:

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

- Sailors:
- B+ tree on rating
- Hash on sid

- Reserves:
- B+ tree on bid



CASE II: Multiple-Relation Queries-
An Example

 Pass 1:

 Sailors:

 B+ tree matches rating>5, 
and is probably the cheapest

 If this selection is expected to 
retrieve a lot of tuples, and 
the index is un-clustered, 
file scan might be cheaper!

 Reserves: B+ tree on bid matches 
bid=500; probably the cheapest

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

- Sailors:
- B+ tree on rating
- Hash on sid

- Reserves:
- B+ tree on bid



CASE II: Multiple-Relation Queries-
An Example

 Pass 2:

 Consider each plan retained from 
Pass 1 as the outer, and join it effectively
with every other relation

 E.g., Reserves as outer:  

 Hash index can be used to get 
Sailors tuples that satisfy 
sid = outer tuple’s sid value

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

- Sailors:
- B+ tree on rating
- Hash on sid

- Reserves:
- B+ tree on bid
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Nested Sub-queries

 Consider the following nested query Q1:

 The nested sub-query can be evaluated just once, 
yielding a single value V

 V can be incorporated into the top-level query as if it 
had been part of the original statement of Q1

SELECT S.sname

FROM Sailors S

WHERE S.rating = 
(SELECT  MAX (S2.rating) 

FROM Sailors S2)



Nested Sub-queries

 Now, consider the following nested query Q2:

 The nested sub-query can still be evaluated just once, but it 
will yield a collection of sids

 Every sid value in Sailors must be checked whether it exists in 
the collection of sids returned by the nested sub-query
 This entails a join, and the full range of join methods can be explored!

SELECT S.sname

FROM Sailors S

WHERE EXISTS 
(SELECT  R.sid

FROM Reserves R

WHERE R.bid=103 )



Nested Sub-queries
 Now, consider another nested query Q3:

 Q3 is correlated; hence, we “cannot” evaluate the sub-query 
just once!

 In this case, the typical evaluation strategy is to evaluate the 
nested sub-query for each tuple of Sailors

SELECT S.sname

FROM Sailors S

WHERE EXISTS 
(SELECT  *
FROM Reserves R

WHERE R.bid=103 

AND R.sid=S.sid)



Summary
 Query optimization is a crucial task in relational DBMSs

 We must understand query optimization in order to understand 
the performance impact of a given database design (relations, 
indexes) on a workload (set of queries)

 Two parts to optimizing a query:

1. Consider a set of alternative plans (e.g., using dynamic 
programming)

 Apply selections/projections as early as possible

 Prune search space; typically, keep left-deep plans only

2. Estimate the cost of each plan that is considered

 Must estimate size of result and cost of each tree node

 Key issues: Statistics, indexes, operator implementations



Next Class

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction 
Manager

Lock 
Manager

Recovery 
Manager


