
Database Applications (15-415)

DBMS Internals- Part IX
Lecture 20, April 5, 2015

Mohammad Hammoud

Today…
 Last Session:

 DBMS Internals- Part VIII
 Algorithms for Relational Operations (Cont’d)

 Today’s Session:
 DBMS Internals- Part IX

 Query Optimization

 Announcements:
 PS4 is now posted. It is due on Sunday, April 12

by midnight
 Quiz II is on Thursday, April 9th (all concepts covered

after the midterm are included)

DBMS Layers

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Outline

A Brief Primer on Query Optimization

Evaluating Query Plans

Relational Algebra Equivalences

Estimating Plan Costs

Enumerating Plans

Cost-Based Query Sub-System

Query Parser

Query Optimizer

Plan

Generator

Plan Cost

Estimator

Query Plan Evaluator

Catalog Manager

Usually there is a
heuristics-based
rewriting step before
the cost-based steps.

Schema Statistics

Select *

From Blah B

Where B.blah = blah
Queries

Query Optimization Steps

 Step 1: Queries are parsed into internal forms
(e.g., parse trees)

 Step 2: Internal forms are transformed into ‘canonical forms’
(syntactic query optimization)

 Step 3: A subset of alternative plans are enumerated

 Step 4: Costs for alternative plans are estimated

 Step 5: The query evaluation plan with the least estimated
cost is picked

Required Information to Evaluate Queries

 To estimate the costs of query plans, the query
optimizer examines the system catalog and retrieves:

 Information about the types and lengths of fields

 Statistics about the referenced relations

 Access paths (indexes) available for relations

 In particular, the Schema and Statistics components
in the Catalog Manager are inspected to find a good
enough query evaluation plan

Cost-Based Query Sub-System

Query Parser

Query Optimizer

Plan

Generator

Plan Cost

Estimator

Query Plan Evaluator

Catalog Manager

Usually there is a
heuristics-based
rewriting step before
the cost-based steps.

Schema Statistics

Select *

From Blah B

Where B.blah = blah
Queries

Catalog Manager: The Schema

 What kind of information do we store at the Schema?

 Information about tables (e.g., table names and
integrity constraints) and attributes (e.g., attribute
names and types)

 Information about indices (e.g., index structures)

 Information about users

 Where do we store such information?

 In tables, hence, can be queried like any other tables

 For example: Attribute_Cat (attr_name: string,
rel_name: string; type: string; position: integer)

Catalog Manager: Statistics

 What would you store at the Statistics component?
 NTuples(R): # records for table R

 NPages(R): # pages for R

 NKeys(I): # distinct key values for index I

 INPages(I): # pages for index I

 IHeight(I): # levels for I

 ILow(I), IHigh(I): range of values for I

 ...

 Such statistics are important for estimating plan
costs and result sizes (to be discussed shortly!)

SQL Blocks

 SQL queries are optimized by decomposing them into a
collection of smaller units, called blocks

 A block is an SQL query with:

 No nesting

 Exactly 1 SELECT and 1 FROM clauses

 At most 1 WHERE, 1 GROUP BY and 1 HAVING clauses

 A typical relational query optimizer concentrates on
optimizing a single block at a time

Translating SQL Queries Into Relational
Algebra Trees

select name

from STUDENT, TAKES

where c-id=‘415’ and

STUDENT.ssn=TAKES.ssn

STUDENT TAKES

s

p

 An SQL block can be thought of as an algebra expression containing:
 A cross-product of all relations in the FROM clause
 Selections in the WHERE clause
 Projections in the SELECT clause

 Remaining operators can be carried out on the result of such
SQL block

Translating SQL Queries Into Relational
Algebra Trees (Cont’d)

STUDENT TAKES

s

p

STUDENT TAKES

s

p Canonical form

Still the same result!

How can this be guaranteed?

Translating SQL Queries Into Relational
Algebra Trees (Cont’d)

STUDENT TAKES

s

p

STUDENT TAKES

s

p Canonical form

OBSERVATION: try to perform selections and projections early!

Translating SQL Queries Into Relational
Algebra Trees (Cont’d)

STUDENT TAKES

s

p

Index; seq scan

Hash join;

merge join;

nested loops;

How to evaluate a query plan (as opposed to
evaluating an operator)?

Outline

A Brief Primer on Query Optimization

Evaluating Query Plans

Relational Algebra Equivalences

Estimating Plan Costs

Enumerating Plans

Query Evaluation Plans

 A query evaluation plan (or simply a plan) consists of an
extended relational algebra tree (or simply a tree)

 A plan tree consists of annotations at each node indicating:

 The access methods to use for each relation

 The implementation method to use for each operator

 Consider the following SQL query Q:

SELECT S.sname

FROM Reserves R, Sailors S

WHERE R.sid=S.sid AND
R.bid=100 AND S.rating>5

What is the
corresponding

RA of Q?

Query Evaluation Plans (Cont’d)

 Q can be expressed in relational algebra as follows:

)(Re
5100

(Sailors
sidsid

serves
ratingbidsname

sp

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

A RA Tree:

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

An Extended RA Tree:

(File Scan)(File Scan)

Pipelining vs. Materializing

 When a query is composed of several operators, the
result of one operator can sometimes be pipelined to
another operator

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

(File Scan)(File Scan)

Pipeline the output of the join into the
selection and projection that follow

Applied on-the-fly

Pipelining vs. Materializing

 When a query is composed of several operators, the
result of one operator can sometimes be pipelined to
another operator

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

(File Scan)(File Scan)

Pipeline the output of the join into the
selection and projection that follow

Applied on-the-fly

In contrast, a temporary table can be materialized
to hold the intermediate result of the join and read
back by the selection operation!

Pipelining can significantly save I/O cost!

The I/O Cost of the Q Plan

 What is the I/O cost of the following evaluation plan?

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

(File Scan)(File Scan)

 The cost of the join is 1000 + 1000 * 500 = 501,000 I/Os (assuming page-oriented
Simple NL join)

 The selection and projection are done on-the-fly; hence, do not incur additional I/Os

Pushing Selections

 How can we reduce the cost of a join?

 By reducing the sizes of the input relations!

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Involves bid in Reserves;
hence, “push” ahead of the join!

Involves rating in Sailors;
hence, “push” ahead of the join!

Pushing Selections

 How can we reduce the cost of a join?

 By reducing the sizes of the input relations!

Reserves Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

(File Scan)(File Scan)

The I/O Cost of the New Q Plan

 What is the I/O cost of the following evaluation plan?

Reserves Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Cost of Scanning Reserves = 1000 I/Os
Cost of Writing T1 = 10* I/Os (later)

Cost of Scanning Sailors = 500 I/Os
Cost of Writing T2 = 250* I/Os (later)

*Assuming 100 boats and uniform distribution of reservations across boats.

*Assuming 10 ratings and uniform distribution over ratings.

The I/O Cost of the New Q Plan

 What is the I/O cost of the following evaluation plan?

Reserves Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)
Cost = 2×4×250 = 2000 I/Os

(assuming B = 5)
Cost = 2×2×10 = 40 I/Os

(assuming B = 5)

Merge Cost = 10 + 250 = 260 I/Os

The I/O Cost of the New Q Plan

 What is the I/O cost of the following evaluation plan?

Reserves Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Done on-the-fly, thus, do
not incur additional I/Os

The I/O Cost of the New Q Plan

 What is the I/O cost of the following evaluation plan?

Reserves Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Cost of Scanning Reserves = 1000 I/Os
Cost of Writing T1 = 10 I/Os (later)

Cost of Scanning Sailors = 500 I/Os
Cost of Writing T2 = 250 I/Os (later)

Cost = 2×4×250 = 2000 I/Os
(assuming B = 5)

Cost = 2×2×10 = 40 I/Os
(assuming B = 5)

Merge Cost = 10 + 250 = 260 I/Os

Total Cost = 1000 + 10 + 500 + 250 + 40 + 2000 + 260 = 4060 I/Os

Done on-the-fly, thus, do
not incur additional I/Os

The I/O Costs of the Two Q Plans

Total Cost = 501, 000 I/Os

Reserves Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

(File Scan)(File Scan)

Total Cost = 4060 I/Os

Pushing Projections

 How can we reduce the cost of a join?

 By reducing the sizes of the input relations!

 Consider (again) the following plan:

Reserves Sailors

sid=sid

bid=100

sname

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

 What are the attributes required
from T1 and T2?
 Sid from T1
 Sid and sname from T2

Hence, as we scan Reserves and
Sailors we can also remove

unwanted columns (i.e., “Push” the
projections ahead of the join)!

Pushing Projections

 How can we reduce the cost of a join?

 By reducing the sizes of the input relations!

 Consider (again) the following plan:

Reserves Sailors

sid=sid

bid=100

sname

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

The cost after applying
this heuristic can become
2000 I/Os (as opposed to

4060 I/Os with only
pushing the selection)!

“Push” ahead
the join

 What if indexes are available on Reserves and Sailors?

Using Indexes

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

(Hash index on sid)

(Clustered hash index on bid)

 With clustered index on bid of Reserves, we get 100,000/100 = 1000 tuples (assuming 100
boats and uniform distribution of reservations across boats)

 Since the index is clustered, the 1000 tuples appear consecutively within the same
bucket; thus # of pages = 1000/100 = 10 pages

Using Indexes

 What if indexes are available on Reserves and Sailors?

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

(Hash index on sid)

(Clustered hash index on bid)

 For each selected Reserves tuple, we can retrieve matching Sailors tuples using the hash
index on the sid field

 Selected Reserves tuples need not be materialized and the join result can be pipelined!
 For each tuple in the join result, we apply rating > 5 and the projection of sname on-the-fly

Using Indexes

 What if indexes are available on Reserves and Sailors?

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

(Hash index on sid)

(Clustered hash index on bid)

Is it necessary to project out
unwanted columns?

NO, since selection results
are NOT materialized

Using Indexes

 What if indexes are available on Reserves and Sailors?

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

(Hash index on sid)

(Clustered hash index on bid)

Does the hash index on sid
need to be clustered?

NO, since there is at most
1 matching Sailors tuple
per a Reserves tuple! Why?

Using Indexes

 What if indexes are available on Reserves and Sailors?

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

(Hash index on sid)

(Clustered hash index on bid)

Cost = 1.2 I/Os (if
A(1)) or 2.2 (if A(2))

Using Indexes

 What if indexes are available on Reserves and Sailors?

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

(Hash index on sid)

(Clustered hash index on bid)

Why not pushing this selection
ahead of the join?

It would require a scan on Sailors!

 What is the I/O cost of the following evaluation plan?

The I/O Cost of the New Q Plan

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

(Hash index on sid)

(Clustered hash index on bid)

10 I/Os

Cost = 1.2 I/Os for
1000 Reserves
tuples; hence,
1200 I/Os

Total Cost = 10 + 1200 = 1210 I/Os

Comparing I/O Costs: Recap

Total Cost = 501, 000 I/Os

Reserves Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested

Loops)

(On-the-fly)

(On-the-fly)

(File Scan)(File Scan)

Total Cost = 4060 I/Os

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Hash

index)

(Index Nested

Loops,
with pipelining)

(On-the-fly)

(Hash
index
on sid)

Total Cost = 1210 I/Os

But, How Can we Ensure Correctness?

Canonical form

Still the same result!

How can this be guaranteed?

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Reserves

Sailors

sid=sid

bid=100

sname

rating > 5

Outline

A Brief Primer on Query Optimization

Evaluating Query Plans

Relational Algebra Equivalences

Estimating Plan Costs

Enumerating Plans

Relational Algebra Equivalences

 A relational query optimizer uses relational algebra
equivalences to identify many equivalent expressions for a
given query

 Two relational algebra expressions over the same set of
input relations are said to be equivalent if they produce the
same result on all relations’ instances

 Relational algebra equivalences allow us to:

 Push selections and projections ahead of joins

 Combine selections and cross-products into joins

 Choose different join orders

RA Equivalences: Selections

 Two important equivalences involve selections:

1. Cascading of Selections:

2. Commutation of Selections:

 s s sc cn c cnR R1 1

 s s s sc c c cR R1 2 2 1

Allows us to combine several selections into one selection

OR: Allows us to replace a selection with several smaller selections

Allows us to test selection conditions in either order

RA Equivalences: Projections

 One important equivalence involves projections:

 Cascading of Projections:

This says that successively eliminating columns from a relation
is equivalent to simply eliminating all but the columns retained

by the final projection!

 RR anaa ppp ...11

RA Equivalences: Cross-Products and Joins

 Two important equivalences involve cross-products
and joins:

1. Commutative Operations:

This allows us to choose which relation to be the inner and
which to be the outer!

(R × S) (S × R)

(R S) (S R)

RA Equivalences: Cross-Products and Joins

 Two important equivalences involve cross-products
and joins:

2. Associative Operations:

This says that regardless of the order in which the relations are
considered, the final result is the same!

R × (S × T) (R × S) × T

R (S T) (R S) T

R (S T) (T R) S It follows:

This order-independence is fundamental to how a query optimizer
generates alternative query evaluation plans

RA Equivalences: Selections, Projections,
Cross Products and Joins

 Selections with Projections:

 Selections with Cross-Products:

This says we can commute a selection with a projection if the
selection involves only attributes retained by the projection!

))(())((RR acca pssp

R T c)(SRc s

This says we can combine a selection with a cross-product to
form a join (as per the definition of a join)!

RA Equivalences: Selections, Projections,
Cross Products and Joins

 Selections with Cross-Products and with Joins:

SRcSRc)()(ss

This says we can commute a selection with a cross-product or a join
if the selection condition involves only attributes of one of the

arguments to the cross-product or join!

SRcSRc)()(ss

Caveat: The attributes mentioned in c must appear only in R and
NOT in S

RA Equivalences: Selections, Projections,
Cross Products and Joins

 Selections with Cross-Products and with Joins (Cont’d):

)(
321

)(SR
ccc

SRc

 ss

This says we can push part of the selection condition c ahead of
the cross-product!

)))(
3

(
2

(
1

SR
ccc

 sss

))(
3

)(
2

(
1

S
c

R
cc

sss

This applies to joins as well!

RA Equivalences: Selections, Projections,
Cross Products and Joins

 Projections with Cross-Products and with Joins:

)(
2

)(
1

)(S
a

R
a

SRa ppp

Intuitively, we need to retain only those attributes of R and S that
are either mentioned in the join condition c or included in the set

of attributes a retained by the projection

)(
2

)(
1

)(S
acR

a
ScRa ppp

))(
2

)(
1

()(S
acR

aaScRa pppp

How to Estimate the Cost of Plans?

 Now that correctness is ensured, how can the DBMS
estimate the costs of various plans?

Canonical form

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Reserves

Sailors

sid=sid

bid=100

sname

rating > 5

Next Class

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Continue…

