
Database Applications (15-415)

DBMS Internals- Part VIII
Lecture 19, March 31, 2015

Mohammad Hammoud

Today…
 Last Session:

 DBMS Internals- Part VII
 Algorithms for Relational Operations (Cont’d)

 Today’s Session:
 DBMS Internals- Part VIII

 Algorithms for Relational Operations (Cont’d)
 Introduction to Query Optimization

 Announcements:
 Project 2 grades will be out on Thursday, April 2nd

 Project 3 is due on Thursday, April 2nd by midnight
 PS4 will be posted by Thursday, April 2nd. It will be due on April

16th by midnight
 Quiz II will be held on Thursday, April 9th (all concepts covered

after the midterm are included)

DBMS Layers

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Outline

The Join Operation (Cont’d)

The Set Operations

The Aggregate Operations

Introduction to Query Optimization

The Join Operation

 We will study five join algorithms, two which enumerate
the cross-product and three which do not

 Join algorithms which enumerate the cross-product:

 Simple Nested Loops Join

 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:

 Index Nested Loops Join

 Sort-Merge Join

 Hash Join

Hash Join

 The join algorithm based on hashing has two phases:

 Partitioning (also called Building) Phase

 Probing (also called Matching) Phase

 Idea: Hash both relations on the join attribute into k
partitions, using the same hash function h

 Premise: R tuples in partition i can join only with S
tuples in the same partition i

Hash Join: Partitioning Phase

 Partition both relations using hash function h

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .

Two tuples that belong to different partitions are
guaranteed not to match

Hash Join: Probing Phase

 Read in a partition of R, hash it using h2 (<> h)

 Scan the corresponding partition of S and search
for matches

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffersDisk

Output
buffer

Disk

Join Result

hash
fn
h2

h2

Hash Join: Cost

 What is the cost of the partitioning phase?

 We need to scan R and S, and write them out once

 Hence, cost is 2(M+N) I/Os

 What is the cost of the probing phase?

 We need to scan each partition once (assuming no partition
overflows) of R and S

 Hence, cost is M + N I/Os

 Total Cost = 3 (M + N)

Hash Join: Cost (Cont’d)

 Total Cost = 3 (M + N)

 Joining Reserves and Sailors would cost 3 (500 + 1000)
= 4500 I/Os

 Assuming 10ms per I/O, hash join takes less than
1 minute!

 This underscores the importance of using a good join
algorithm (e.g., Simple NL Join takes ~140 hours!)

But, so far we have been assuming that partitions fit in memory!

Memory Requirements and
Overflow Handling

 How can we increase the chances for a given partition
in the probing phase to fit in memory?
 Maximize the number of partitions in the building phase

 If we partition R (or S) into k partitions, what would be
the size of each partition (in terms of B)?
 At least k output buffer pages and 1 input buffer page
 Given B buffer pages, k = B – 1
 Hence, the size of an R (or S) partition = M/B-1

 What is the number of pages in the (in-memory) hash
table built during the probing phase per a partition?
 f.M/B-1, where f is a fudge factor

Memory Requirements and
Overflow Handling

 What do we need else in the probing phase?
 A buffer page for scanning the S partition

 An output buffer page

 What is a good value of B as such?
 B > f.M/B-1 + 2

 Therefore, we need ~

 What if a partition overflows?
 Apply the hash join technique recursively (as is the case

with the projection operation)

MfB .

Hash Join vs. Sort-Merge Join

 If (M is the # of pages in the smaller
relation) and we assume uniform partitioning, the
cost of hash join is 3(M+N) I/Os

 If (N is the # of pages in the larger
relation), the cost of sort-merge join is 3(M+N) I/Os

MB

NB

Which algorithm to use, hash join or sort-merge join?

Hash Join vs. Sort-Merge Join
 If the available number of buffer pages falls between

and , hash join is preferred (why?)

 Hash Join shown to be highly parallelizable (beyond the
scope of the class)

 Hash join is sensitive to data skew while sort-merge join
is not

 Results are sorted after applying sort-merge join (may help
“upstream” operators)

 Sort-merge join goes fast if one of the input relations is
already sorted

N

M

The Join Operation

 We will study five join algorithms, two which enumerate
the cross-product and three which do not

 Join algorithms which enumerate the cross-product:

 Simple Nested Loops Join

 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:

 Index Nested Loops Join

 Sort-Merge Join

 Hash Join

General Join Conditions

 Thus far, we assumed a single equality join condition

 Practical cases include join conditions with several
equality (e.g., R.sid=S.sid AND R.rname=S.sname)
and/or inequality (e.g., R.rname < S.sname) conditions

 We will discuss two cases:

 Case 1: a join condition with several equalities

 Case 2: a join condition with an inequality comparison

General Join Conditions: Several Equalities

 Case 1: a join condition with several equalities (e.g.,
R.sid=S.sid AND R.rname=S.sname)
 Simple NL join and Block NL join are unaffected

 For index NL join, we can build an index on Reserves using the
composite key (sid, rname) and treat Reserves as the
inner relation

 For sort-merge join, we can sort Reserves on the composite
key (sid, rname) and Sailors on the composite key (sid, sname)

 For hash join, we can partition Reserves on the composite key
(sid, rname) and Sailors on the composite key (sid, sname)

General Join Conditions: An Inequality

 Case 2: a join condition with an inequality
comparison (e.g., R.rname < S.sname)
 Simple NL join and Block NL join are unaffected

 For index NL join, we require a B+ tree index

 Sort-merge join and hash join are not
applicable!

Outline

The Join Operation (Cont’d)

The Set Operations

The Aggregate Operations

Introduction to Query Optimization

Set Operations

 R ∩ S is a special case of join!
 Q: How?

 A: With equality on all fields in the join condition

 R × S is a special case of join!
 Q: How?

 A: With no join condition

 How to implement R U S and R – S?
 Algorithms based on sorting

 Algorithms based on hashing

Union and Difference Based on Sorting

 How to implement R U S based on sorting?

 Sort R and S

 Scan sorted R and S (in parallel) and merge them,
eliminating duplicates

 How to implement R – S based on sorting?

 Sort R and S

 Scan sorted R and S (in parallel) and write only tuples
of R that do not appear in S

Union and Difference Based on Hashing

 How to implement R U S based on hashing?

 Partition R and S using a hash function h

 For each S-partition, build in-memory hash table (using h2)

 Scan R-partition which corresponds to S-partition and write
out tuples while discarding duplicates

 How to implement R – S based on hashing?

 Partition R and S using a hash function h

 For each S-partition, build in-memory hash table (using h2)

 Scan R-partition which corresponds to S-partition and write
out tuples which are in R-partition but not in S-partition

Outline

The Join Operation (Cont’d)

The Set Operations

The Aggregate Operations

Introduction to Query Optimization

Aggregate Operations

 Assume the following SQL query Q1:

 How to evaluate Q1?
 Scan Sailors

 Maintain the average on age

 In general, we implement aggregate operations by:
 Scanning the input relation

 Maintaining some running information (e.g., total for
SUM and smaller for MIN)

SELECT AVG(S.age)
FROM Sailors S

Aggregate Operations

 Assume the following SQL query Q2:

 How to evaluate Q2?

 An algorithm based on sorting

 An algorithm based on hashing

 Algorithm based on sorting:

 Sort Sailors on rating

 Scan sorted Sailors and compute the average for each
rating group

SELECT AVG(S.age)
FROM Sailors S
GROUP BY S.rating

Aggregate Operations

 Assume the following SQL query Q2:

 How to evaluate Q2?

 An algorithm based on sorting

 An algorithm based on hashing

 Algorithm based on hashing:

 Build a hash table on rating

 Scan Sailors and for each tuple t, probe its corresponding
hash bucket and update average

SELECT AVG(S.age)
FROM Sailors S
GROUP BY S.rating

Aggregate Operations

 Assume the following SQL query Q2:

 How to evaluate Q2 with the existence of an index?

 If group-by attributes form prefix of search key, we can
retrieve data entries/tuples in group-by order and
thereby avoid sorting

 If the index is a tree index whose search key includes all
attributes in SELECT, WHERE and GROUP BY clauses, we
can pursue an index-only scan

SELECT AVG(S.age)
FROM Sailors S
GROUP BY S.rating

Outline

The Join Operation (Cont’d)

The Set Operations

The Aggregate Operations

Introduction to Query Optimization

DBMS Layers

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Cost-Based Query Sub-System

Query Parser

Query Optimizer

Plan

Generator

Plan Cost

Estimator

Query Plan Evaluator

Catalog Manager

Usually there is a
heuristics-based
rewriting step before
the cost-based steps.

Schema Statistics

Select *

From Blah B

Where B.blah = blah
Queries

Query Optimization Steps

 Step 1: Queries are parsed into internal forms
(e.g., parse trees)

 Step 2: Internal forms are transformed into ‘canonical forms’
(syntactic query optimization)

 Step 3: A subset of alternative plans are enumerated

 Step 4: Costs for alternative plans are estimated

 Step 5: The query evaluation plan with the least estimated
cost is picked

Required Information to Evaluate Queries

 To estimate the costs of query plans, the query
optimizer examines the system catalog and retrieves:

 Information about the types and lengths of fields

 Statistics about the referenced relations

 Access paths (indexes) available for relations

 In particular, the Schema and Statistics components
in the Catalog Manager are inspected to find a good
enough query evaluation plan

Cost-Based Query Sub-System

Query Parser

Query Optimizer

Plan

Generator

Plan Cost

Estimator

Query Plan Evaluator

Catalog Manager

Usually there is a
heuristics-based
rewriting step before
the cost-based steps.

Schema Statistics

Select *

From Blah B

Where B.blah = blah
Queries

Catalog Manager: The Schema

 What kind of information do we store at the Schema?

 Information about tables (e.g., table names and
integrity constraints) and attributes (e.g., attribute
names and types)

 Information about indices (e.g., index structures)

 Information about users

 Where do we store such information?

 In tables, hence, can be queried like any other tables

 For example: Attribute_Cat (attr_name: string,
rel_name: string; type: string; position: integer)

Catalog Manager: Statistics

 What would you store at the Statistics component?
 NTuples(R): # records for table R

 NPages(R): # pages for R

 NKeys(I): # distinct key values for index I

 INPages(I): # pages for index I

 IHeight(I): # levels for I

 ILow(I), IHigh(I): range of values for I

 ...

 Such statistics are important for estimating plan
costs and result sizes (to be discussed next week!)

SQL Blocks

 SQL queries are optimized by decomposing them into a
collection of smaller units, called blocks

 A block is an SQL query with:

 No nesting

 Exactly 1 SELECT and 1 FROM clauses

 At most 1 WHERE, 1 GROUP BY and 1 HAVING clauses

 A typical relational query optimizer concentrates on
optimizing a single block at a time

Translating SQL Queries Into Relational
Algebra Trees

select name

from STUDENT, TAKES

where c-id=‘415’ and

STUDENT.ssn=TAKES.ssn

STUDENT TAKES

s

p

 An SQL block can be thought of as an algebra expression containing:
 A cross-product of all relations in the FROM clause
 Selections in the WHERE clause
 Projections in the SELECT clause

 Remaining operators can be carried out on the result of such
SQL block

Translating SQL Queries Into Relational
Algebra Trees (Cont’d)

STUDENT TAKES

s

p

STUDENT TAKES

s

p Canonical form

Still the same result!

How can this be guaranteed? Next class!

Translating SQL Queries Into Relational
Algebra Trees (Cont’d)

STUDENT TAKES

s

p

STUDENT TAKES

s

p Canonical form

OBSERVATION: try to perform selections and projections early!

Translating SQL Queries Into Relational
Algebra Trees (Cont’d)

STUDENT TAKES

s

p

Index; seq scan

Hash join;

merge join;

nested loops;

How to evaluate a query plan (as opposed to
evaluating an operator)?

Next Class

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Continue…

