
Database Applications (15-415)

DBMS Internals- Part VI
Lecture 17, March 24, 2015

Mohammad Hammoud

Today…
 Last Two Sessions:

 DBMS Internals- Part V
 External Sorting

 How to Start a Company in Five (maybe not so) Easy Steps
(By Michael Stonebraker)

 Today’s Session:
 DBMS Internals- Part VI

 External Sorting (Cont’d)
 Algorithms for Relational Operations

 Announcements:
 PS3 is due on Thursday, March 26 by midnight
 P3 is now posted. It is due on Thursday, April 2 by midnight

DBMS Layers

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Continue with
External Sorting

Using B+ Trees for External Sorting

 Scenario: the relation to be sorted has a B+ tree
index on its primary key

 IDEA: retrieve records in order by traversing
leaf pages

 Is this a good idea?

 What if the B+ tree is clustered?

 What if the B+ tree in un-clustered?

Using Clustered B+ Trees for Sorting

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

 What if Alternative (1) is in use?

 Cost: root to the left-most leaf, then retrieve all leaf pages

 What if Alternative (2) or (3) is in use?

 Cost: root to the left-most leaf, then fetch each page just once

Using Un-clustered B+ Trees for Sorting

 Is Alternative (1) an option?

 No

 What if Alternative (2) or (3) is in use?

 Cost: root to the left-most leaf, then fetch pages
 Worst-case: 1 I/O per each data record!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

Using B+ Trees for External Sorting
 Scenario: the relation to be sorted has a B+ tree

index on its primary key

 IDEA: Can retrieve records in order by traversing
leaf pages

 Is this a good idea?
 What if the B+ tree is clustered?

 Good idea!

 What if the B+ tree in un-clustered?
 Could be a very bad idea!

Summary
 External sorting is important; a DBMS may dedicate

part of its buffer pool for sorting!

 External merge-sorting:
 Pass 0: Produces sorted runs of size B (# buffer pages)
 Later passes: merge runs
 # of runs merged at a time depends on B and block size

 A larger B means a smaller # of passes
 A larger block size means less I/O cost per page, but

potentially a larger # of passes

 Clustered B+ tree is good for sorting; un-clustered tree is
usually bad!

DBMS Layers

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Outline

Introduction

The Selection Operation

The Projection Operation

Relational Operations
 We will consider how to implement:

 Selection ()

 Projection ()

 Join ()

 Set-difference ()

 Union ()

 Aggregation (SUM, MIN, etc.) and GROUP BY

 Since each operation returns a relation, ops can be composed!

 After we cover how to implement operations, we will discuss
how to optimize queries (formed by composing operators)

Assumptions
 We assume the following two relations:

 For Reserves, we assume:
 Each tuple is 40 bytes long, 100 tuples per page, 1000 pages

 For Sailors, we assume:
 Each tuple is 50 bytes long, 80 tuples per page, 500 pages

 Our cost metric is the number of I/Os

 We ignore the computational and output costs

Sailors (sid: integer, sname: string, rating: integer, age: real)

Reserves (sid: integer, bid: integer, day: dates, rname: string)

Outline

Introduction

The Selection Operation

The Projection Operation

The Selection Operation

Discussions on:

Simple Selection Conditions General Selection Conditions

The Selection Operation: Basic Approach

 Consider the following selection query, Q:

 How can we evaluate Q?
 Scan Reserves entirely

 Check the condition on each tuple

 Add the tuple to the result if the condition is satisfied

 What is the I/O cost?
 1000 I/Os (since Reserves contains 1000 pages)!

SELECT *
FROM Reserves R
WHERE R.rname = ‘Joe’

Can we do better?

How to Improve Upon the Basic Approach
for Selections?

 We can utilize the information in the selection condition
and use an index (if a suitable index is available)

 For instance, a B+ tree index on rname can be used to
answer Q considerably faster
 But, an index on bid (for example) would not be useful!

 Different data organizations dictate different evaluations
for the selection operation:
 No Index, Unsorted Data

 No Index, Sorted Data

 B+ Tree Index

 Hash Index

No Index, Unsorted Data

 Assume a selection operation of the form:

 If there is no index on R.attr and R is not sorted, we have
to scan R entirely

 Therefore, the most selective access path is a file scan

 During the file scan, for each tuple, we test the condition
R.attr op value and add the tuple to the result if the
condition is satisfied (this is the basic approach!)

)(. RvalueopattrR

No Index, Sorted Data

 Assume a selection operation of the form:

 What can be done if there is no index on R.attr but R is sorted?

 Do a binary search to locate the first tuple

 Start at the located tuple and scan R until the selection condition
is no more satisfied

 Therefore, the most selective access path is a sorted-file scan

 I/O cost = O(log2 M) + scan cost (which can vary from 0 to M)

)(. RvalueopattrR

B+ Tree Index

 Assume a selection operation of the form:

 What can be done if there is a B+ tree index on R.attr?

 Search the tree to locate the first index entry that points to a
qualifying tuple of R (STEP 1)

 Scan the leaf pages to retrieve all entries in which the key
value satisfies the selection condition (STEP 2)

 What would be the I/O cost?
 STEP 1: 2 or 3 I/Os

 STEP 2: Depends on the number of qualifying tuples, the
employed alternative and whether the index is clustered

)(. RvalueopattrR

B+ Tree Index (Cont’d)

 What if the index uses Alternative (1)?

 The leaf pages contain the actual tuples and no additional cost
is incurred

 What if the index is clustered and uses Alternative (2) or (3)?

 Best case: 1 I/O

 Worst case: # of leaf pages scanned

 What if the index is un-clustered and uses Alternative (2) or (3)?

 Each index entry can point to a qualifying tuple on a different page

 Cost = 1 I/O per a qualifying tuple!

 Can we do better?

B+ Tree Index (Cont’d)

 Important refinement for un-clustered indexes:

 Find qualifying index entries

 Sort the rids by their page-id component

 Read tuples in order

 This ensures that each data page is fetched just once

 I/O Cost = 1 I/O per a data page (vs. 1 I/O per a
qualifying tuple)!

Hash Index

 Assume an “equality” selection operation S of the form:

 The best way to implement S is to use a hash index (if
available on R.attr)

 Cost = 1 or 2 I/Os (to retrieve the appropriate bucket page)
+ # of I/Os to retrieve qualifying tuples (could be 1 or many)

 The cost of retrieving qualifying tuples depends on:
 The number of such tuples

 Whether the index is clustered or un-clustered!

)(. RvalueattrR

The Selection Operation

Discussions on:

Simple Selection Conditions General Selection Conditions

General Selection Conditions

 Thus far, we have considered only simple selection
conditions of the form R.attr op value

 In general, a selection condition is an expression with
logical connectives (i.e., ˄ and ˅) of terms
 E.g., R.rname = ‘Joe’ ˄ R.bid=r (R)

 A selection with conjunctions of conditions is said to be in
Conjunctive Normal Form (CNF) and each condition is
called a conjunct

 A conjunct can contain disjunctions and is said to
be disjunctive

Two General Cases

 We will discuss general selections:

 Without Disjunctions

 With Disjunctions

Two General Cases

 We will discuss general selections:

 Without Disjunctions

 With Disjunctions

Evaluating Selections without Disjunctions

 There are mainly three cases to consider:

 Case 1: No index is available on any of the
conjuncts

Scan the relation!

 Example: Consider day<24/3/2015 AND
bid=5 AND sid=3

 Scan Reserves and retrieve tuples

 For each retrieved tuple check day<24/3/2015
AND bid=5 AND sid=3

Evaluating Selections without Disjunctions

 There are mainly three cases to consider:

 Case 2: There is one index available for one
of the conjuncts

Use that index to retrieve tuples that
satisfy the pertaining conjunct

Check for each retrieved tuple any
remaining conjunct which does not
match the index

The Single-Index Approach: Examples

 Consider day<24/3/2015 AND bid=5 AND sid=3:

 Example 1:
 A B+ tree index on day is available; hence, use that

index to retrieve tuples that satisfy day < 24/3/2015

 For each retrieved tuple check bid=5 and sid=3

 Example 2:
 A hash index on <bid, sid> is available; hence, use

that index to retrieve tuples that satisfy bid=5
and sid= 3

 For each retrieved tuple check day< 24/3/2015

Evaluating Selections without Disjunctions

 There are mainly three cases to consider:

 Case 3: Multiple indices are available

Get sets of rids (assuming Alternative (2) or
(3)) using each matching index

 Intersect these sets of rids

Retrieve the tuples

Check for each retrieved tuple any remaining
conjuncts which do not match indices

The Multiple-Indices Approach:
An Example

 Consider day<24/3/2015 AND bid=5 AND sid=3:

 If we have a B+ tree index on day (Id) and an
index on sid (Is), we can:

Retrieve rids satisfying day < 24/3/2015
using Id

Retrieve rids satisfying sid=3 using Is

 Intersect results

Retrieve tuples and check bid=5

Two General Cases

 We will discuss general selections:

 Without Disjunctions

 With Disjunctions

Evaluating Selections with Disjunctions

 There are mainly three cases to consider:

 CASE 1: If a conjunct, C, is a disjunction of terms and one term
requires a file scan, testing C would require a file scan

 Example: Consider day<8/9/94 OR rname=‘Omar’ and assume
hash indices on rname (i.e., I1) and sid (i.e., I2) are available

 We can retrieve tuples satisfying rname = ‘Omar’ using I1

 However, day<8/9/94 requires a file scan

 Hence, as the file scan is to be done, we can check the
condition rname=‘Omar’ and preclude using I1 at first place

 Therefore, the most selective access path is a file scan only

Evaluating Selections with Disjunctions

 There are mainly three cases to consider:

 CASE 2: If the selection condition is CNF and contains a
conjunct with a disjunction, we can take advantage of other
conjuncts

 Example: Consider (day<1/1/99 OR rname=‘Joe’) AND sid=3.
Suppose also the existence of a hash index on sid (Is)

 We can use Is to find qualifying tuples on sid and check for
each retrieved tuple day<1/1/99 OR rname=‘Joe’

 Therefore, the most selective access path is the index
on sid

Evaluating Selections with Disjunctions

 There are mainly three cases to consider:

 CASE 3: If every term in a disjunction has a matching index,
we can retrieve candidate tuples using the indices and union
them all

 Example: Consider day<8/9/94 OR rname=‘Alice’ and suppose
B+ indices on day (i.e., I1) and rname (i.e., I2) are available

 We can retrieve tuples satisfying day<8/9/94 using I1

 In addition, we can retrieve tuples satisfying rname =
‘Alice’ using I2

 We can subsequently union their results

Q: What if all matching indices use Alternative (2) or (3)?

A: Apply the refinement for un-clustered indices!

Outline

Introduction

The Selection Operation

The Projection Operation

The Projection Operation

 Consider the following query, Q, which implies
a projection:

 How can we evaluate Q?

 Scan R and remove unwanted attributes (STEP 1)

 Eliminate any duplicate tuples (STEP 2)

 STEP2 is difficult and can be pursued using two
basic approaches:

 Projection Based on Sorting

 Projection Based on Hashing

SELECT DISTINCT R.sid, R.bid
FROM Reserves R

The Projection Operation

Discussions on:

Projection Based on Sorting Projection Based on Hashing

Projection Based on Sorting

 The approach based on sorting has the following steps:
 Step 1: Scan R and produce a set of tuples, S, which contains

only the wanted attributes

 Step 2: Sort S using external sorting

 Step 3: Scan the sorted result, compare adjacent tuples, and
discard duplicates

 What is the I/O cost (assuming we use temporary relations)?
 Step 1: M + T I/Os, where M is the number of pages of R and T is

the number of pages of the temporary relation

 Step 2: 2T × # of passes I/Os

 Step 3: T I/Os

The Projection Operation: An Example

 Consider Q again:

 How many I/Os would evaluating Q incur?

 Step 1: M + T = 1000 I/Os + 250 I/Os, assuming each
tuple written in the temporary relation is 10 bytes long

 Step 2: if B (say) is 20, we can sort the temporary
relation in 2 passes at a cost of 2×250×2 = 1000 I/Os

 Step 3: add another 250 I/Os for the scan

 Total = 2500 I/Os

SELECT DISTINCT R.sid, R.bid
FROM Reserves R

Can we do better?

Projection Based on Modified
External Sorting

 Projection based on sorting can be simply done by
modifying the external sorting algorithm

 How can this be achieved?

 Pass 0: Project out unwanted attributes

 Passes 2, 3, etc.: Eliminate duplicates during merging

 What is the I/O cost?

 Pass 0: M + T I/Os

 Passes 2, 3, etc.: Cost of merging

Projection Based on Modified
External Sorting: An Example

 Consider Q again:

 How many I/Os would evaluating Q incur?

 Pass 0: M + T = 1000 + 250 I/Os

 Pass 1: read the runs (total of 250 pages) and
merge them

 Grand Total = 1500 I/Os (as opposed to 2500 I/Os
using the unmodified version!)

SELECT DISTINCT R.sid, R.bid
FROM Reserves R

The Projection Operation

Discussions on:

Projection Based on Sorting Projection Based on Hashing

Projection Based on Hashing

 The algorithm based on hashing has two phases:

 Partitioning Phase

 Duplicate Elimination Phase

 Partitioning Phase (assuming B buffers):

 Read R using 1 input buffer, one page at a time

 For each tuple in the input page

 Discard unwanted fields

 Apply hash function h1 to choose one of B-1
output buffers

Projection Based on Hashing

 The algorithm based on hashing has two phases:

 Partitioning Phase

 Duplicate Elimination Phase

 Partitioning Phase:

B main memory buffers DiskDisk

Original

Relation OUTPUT

2INPUT

1

hash
function

h1 B-1

Partitions

1

2

B-1

. . .

Two tuples that belong to different partitions are
guaranteed not to be duplicates

Projection Based on Hashing

 The algorithm based on hashing has two phases:

 Partitioning Phase

 Duplicate Elimination Phase

 Duplicate Elimination Phase:

 Read each partition and build a corresponding in-
memory hash table, using hash function h2 (<> h1) on all
fields, while discarding duplicates

 If a partition P does not fit in memory, apply hash-based
projection algorithm recursively on P

Projection Based on Hashing

 The algorithm based on hashing has two phases:

 Partitioning Phase

 Duplicate Elimination Phase

 What is the I/O cost of hash-based projection?

 Partitioning phase = M (to read R) + T (to write out the
projected tuples) I/Os

 Duplicate Elimination phase = T (to read in every
partition) (CPU and final writing costs are ignored)

 Total Cost = M + 2T

Projection Based on Hashing: An Example

 Consider Q again:

 How many I/Os would evaluating Q incur?

 Partitioning phase: M + T = 1000 + 250 I/Os

 Duplicate Elimination phase: T = 250 I/Os

 Total = 1500 I/Os (as opposed to 2500 I/Os and 1500
I/Os using projection based on sorting and projection
based on modified external sorting, respectively)

SELECT DISTINCT R.sid, R.bid
FROM Reserves R

Which one is better, projection based on modified external sorting or
projection based on hashing?

Sorting vs. Hashing

 The sorting-based approach is superior if:
 The duplicate frequency is high

 Or the distribution of (hash) values is very skewed

 With the sorting-based approach the result is sorted!

 Most DBMSs incorporate a sorting utility, which can be
used to implement projection relatively easy

 Hence, sorting is the standard approach for projection!

Index-Only Scan

 Can an index be used for projections?
 Useful if the key includes all wanted attributes

 As such, key values can be simply retrieved from the
index without ever accessing the actual relation!

 This technique is referred to as index-only scan

 If an ordered (i.e., tree) index contains all wanted
attributes as prefix of search key, we can:
 Retrieve index entries in order (index-only scan)

 Discard unwanted fields and compare adjacent tuples to
eliminate duplicates

Next Class

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Continue…

