
Database Applications (15-415)

DBMS Internals- Part V
Lecture 15, March 15, 2015

Mohammad Hammoud

Today…
 Last Session:

 DBMS Internals- Part IV
 Tree-based (i.e., B+ Tree) and Hash-based (i.e., Extendible

Hashing) indexes

 Today’s Session:
 DBMS Internals- Part V

 Hash-based indexes (Cont’d) and External Sorting

 Announcements:
 Project 2 is due today by midnight. Student demos will be

conducted on Tuesday/Thursday
 PS3 is now posted and it is due on March 26 by midnight
 Project 3 will be posted by Thursday

DBMS Layers

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Continue…

Outline

Linear Hashing

Why Sorting?

In-Memory vs. External Sorting

A Simple 2-Way External Merge Sorting

General External Merge Sorting

Optimizations: Replacement Sorting, Blocked I/O and Double Buffering



Linear Hashing

 Another way of adapting gracefully to insertions and
deletions (i.e., pursuing dynamic hashing) is to use
Linear Hashing (LH)

 In contrast to Extendible Hashing, LH

 Does not require a directory

 Deals naturally with collisions

 Offers a lot of flexibility w.r.t the timing of bucket split
(allowing trading off greater overflow chains for higher
average space utilization)

How Linear Hashing Works?

 LH uses a family of hash functions h0, h1, h2, ...

 hi(key) = h(key) mod(2iN); N = initial # buckets

 h is some hash function (range is not 0 to N-1)

 If N = 2d0, for some d0, hi consists of applying h and
looking at the last di bits, where di = d0 + i

 hi+1 doubles the range of hi (similar to directory
doubling)

How Linear Hashing Works? (Cont’d)

 LH uses overflow pages, and chooses buckets to split in
a round-robin fashion

 Splitting proceeds in “rounds”

 A round ends when all NR

(for round R) initial
buckets are split

 Buckets 0 to Next-1
have been split;
Next to NR yet to be split

 Current round number
is referred to as Level

Level
h

Buckets that existed at the

beginning of this round:

this is the range of

Next

Buckets split

in this round

‘split image’

buckets created

in this round

Linear Hashing: Searching For Entries

 To find a bucket for data entry r, find hLevel(r):

 If hLevel(r) in range `Next to NR’ , r belongs there

 Else, r could belong to bucket hLevel(r) or bucket
hLevel(r) + NR; must apply hLevel+1(r) to find out

 Example: search for 5* 0
hh

1

00

01

10

11

000

001

010

011

Next=0

PRIMARY
PAGES

Data entry r
with h(r)=5

Primary

bucket page

44* 36*32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

Level=0, N=4

Level = 0  h0
5* = 101  01

Linear Hashing: Inserting Entries
 Find bucket as in search

 If the bucket to insert the data entry into is full:
 Add an overflow page and insert data entry
 (Maybe) Split Next bucket and increment Next

 Some points to Keep in mind:
 Unlike Extendible Hashing, when an insert triggers a split, the

bucket into which the data entry is inserted is not necessarily
the bucket that is split

 As in Static Hashing, an overflow page is added to store the
newly inserted data entry

 However, since the bucket to split is chosen in a round-robin
fashion, eventually all buckets will be split

Linear Hashing: Inserting Entries

 Example: insert 43*

0
hh

1

Level=0, N=4

00

01

10

11

000

001

010

011

Next=0

PRIMARY
PAGES

44* 36*32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

Level = 0  h0
43* = 101011  11

Add an overflow page and
insert data entry

Linear Hashing: Inserting Entries

 Example: insert 43*

0
hh

1

Level=0, N=4

00

01

10

11

000

001

010

011

Next=0

PRIMARY
PAGES

44* 36*32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

Level = 0  h0
43* = 101011  11

43*

OVERFLOW
PAGES

Split Next bucket and
increment Next

Linear Hashing: Inserting Entries

 Example: insert 43*

Level=0, N=4

Next=0

PRIMARY
PAGES

32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

Level = 0  h0
43* = 101011  11

43*

OVERFLOW
PAGES

44* 36*

Almost there…

0
hh

1

00

01

10

11

000

001

010

011

00100

Linear Hashing: Inserting Entries

 Example: insert 43*

Level=0, N=4

Next=1

PRIMARY
PAGES

32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

Level = 0  h0
43* = 101011  11

43*

OVERFLOW
PAGES

44* 36*

FINAL STATE!

0
hh

1

00

01

10

11

000

001

010

011

00100

Linear Hashing: Inserting Entries

 Another Example: insert 50*

Level = 0  h0
50* = 110010  10

Add an overflow page and
insert data entry

0hh1

22*

00

01

10

11

000

001

010

011

00100

Next=3

01

10

101

110

Level=0, N= 4

PRIMARY
PAGES

OVERFLOW
PAGES

32*

9*

5*

14*

25*

66* 10*18* 34*

35*31* 7* 11* 43*

44*36*

37*29*

30*

Linear Hashing: Inserting Entries

 Another Example: insert 50*

Level = 0  h0
50* = 110010  10

0hh1

22*

00

01

10

11

000

001

010

011

00100

Next=3

01

10

101

110

PRIMARY
PAGES

OVERFLOW
PAGES

32*

9*

5*

14*

25*

66* 10*18* 34*

35*31* 7* 11* 43*

44*36*

37*29*

30*

50*

Split Next bucket and
increment Next

Level=0, N= 4

Linear Hashing: Inserting Entries

 Another Example: insert 50*

Level = 0  h0
50* = 110010  10

Almost there…

0hh1

37*

00

01

10

11

000

001

010

011

00100

10

101

110

111

11

PRIMARY
PAGES

OVERFLOW
PAGES

11

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31*7*

50*

Level=0

Next=3

Linear Hashing: Inserting Entries

 Another Example: insert 50*

Level = 0  h0
50* = 110010  10

Almost there…

0hh1

37*

00

01

10

11

000

001

010

011

00100

10

101

110

Next=0

111

11

PRIMARY
PAGES

OVERFLOW
PAGES

11

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31*7*

50*

Level=0

Linear Hashing: Inserting Entries

 Another Example: insert 50*

Level = 0  h0
50* = 110010  10

FINAL STATE!

0hh1

37*

00

01

10

11

000

001

010

011

00100

10

101

110

Next=0

111

11

PRIMARY
PAGES

OVERFLOW
PAGES

11

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31*7*

50*

Level=1

Linear Hashing: Deleting Entries

 Deletion is essentially the inverse of insertion

 If the last bucket in the file is empty, it can be removed and
Next can be decremented

 If Next is zero and the last bucket becomes empty
 Next is made to point to bucket M/2 -1 (where M is the current

number of buckets)

 Level is decremented

 The empty bucket is removed

 The insertion examples can be worked out backwards as
examples of deletions!

DBMS Layers

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

But, before we will
discuss “Sorting”

Outline

Linear Hashing

Why Sorting?

In-Memory vs. External Sorting

A Simple 2-Way External Merge Sorting

General External Merge Sorting

Optimizations: Replacement Sorting, Blocked I/O and Double Buffering



When Does A DBMS Sort Data?

 Users may want answers in some order
 SELECT FROM student ORDER BY name

 SELECT S.rating, MIN (S.age) FROM Sailors S GROUP BY S.rating

 Bulk loading a B+ tree index involves sorting

 Sorting is useful in eliminating duplicates records

 The Sort-Merge Join algorithm involves sorting
(next session!)

Outline

Linear Hashing

Why Sorting?

In-Memory vs. External Sorting

A Simple 2-Way External Merge Sorting

General External Merge Sorting

Optimizations: Replacement Sorting, Blocked I/O and Double Buffering



In-Memory vs. External Sorting

 Assume we want to sort 60GB of data on a machine
with only 8GB of RAM

 In-Memory Sort (e.g., Quicksort) ?

 Yes, but data do not fit in memory

What about relying on virtual memory?

 In this case, external sorting is needed
 In-memory sorting is orthogonal to external sorting!

Outline

Linear Hashing

Why Sorting?

In-Memory vs. External Sorting

A Simple 2-Way External Merge Sorting

General External Merge Sorting

Optimizations: Replacement Sorting, Blocked I/O and Double Buffering



A Simple Two-Way Merge Sort

 IDEA: Sort sub-files that can fit in memory and merge

 Let us refer to each sorted sub-file as a run

 Algorithm:

 Pass 1: Read a page into memory, sort it, write it

 1-page runs are produced

 Passes 2, 3, etc.,: Merge pairs (hence, 2-way) of runs
to produce longer runs until only one run is left

A Simple Two-Way Merge Sort

 Algorithm:

 Pass 1: Read a page into memory, sort it, write it

 How many buffer pages are needed?

 Passes 2, 3, etc.,: Merge pairs (hence, 2-way) of runs to
produce longer runs until only one run is left

 How many buffer pages are needed?

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk

ONE

THREE

2-Way Merge Sort: An Example

Input File

1-Page Runs

2-Page Runs

4-Page Runs

8-Page Runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5

6

1,2

2,3

3,4

4,5

6,6

7,8

2-Way Merge Sort: I/O Cost Analysis
 If the number of pages in the input file is 2k

 How many runs are produced in pass 0 and of what size?
 2k 1-page runs

 How many runs are produced in pass 1 and of what size?
 2k-1 2-page runs

 How many runs are produced in pass 2 and of what size?
 2k-2 4-page runs

 How many runs are produced in pass k and of what size?
 2k-k 2k-page runs (or 1 run of size 2k)

 For N number of pages, how many passes are incurred?


 How many pages do we read and write in each pass?
 2N

 What is the overall cost?



  1log2 N

 )1log(2 2  NN

2-Way Merge Sort: An Example

Input File

1-Page Runs

2-Page Runs

4-Page Runs

8-Page Runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5

6

1,2

2,3

3,4

4,5

6,6

7,8

Formula Check:

= (2 × 8) × (3 + 1) = 64 I/Os
Correct!

 )1log(2 2  NN

  18log2 

= 4 passes

Outline

Linear Hashing

Why Sorting?

In-Memory vs. External Sorting

A Simple 2-Way External Merge Sorting

General External Merge Sorting

Optimizations: Replacement Sorting, Blocked I/O and Double Buffering



B-Way Merge Sort

 How can we sort a file with N pages using B buffer pages?

 Pass 0: use B buffer pages
 This will produce sorted B-page runs

 Pass 2, …, etc.: merge B-1 runs
 N B/

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2

.

B-Way Merge Sort: I/O Cost Analysis
 I/O cost = 2N × Number of passes

 Number of passes =

 Assume the previous example (i.e., 8 pages), but using
5 buffer pages (instead of 2)
 I/O cost = 32 (as opposed to 64)

 Therefore, increasing the number of buffer pages
minimizes the number of passes and accordingly the
I/O cost!

  1 1 log /B N B

Number of Passes of B-Way Sort

 N B=3 B=5 B=9 B=17 B=129 B=257

100 7 4 3 2 1 1

1,000 10 5 4 3 2 2

10,000 13 7 5 4 2 2

100,000 17 9 6 5 3 3

1,000,000 20 10 7 5 3 3

10,000,000 23 12 8 6 4 3

100,000,000 26 14 9 7 4 4

1,000,000,000 30 15 10 8 5 4

High Fan-in during merging is crucial!

How else can we minimize I/O cost?

Outline

Linear Hashing

Why Sorting?

In-Memory vs. External Sorting

A Simple 2-Way External Merge Sorting

General External Merge Sorting

Optimizations: Replacement Sorting, Blocked I/O and Double Buffering


Replacement Sort

 With a more aggressive implementation of B-way sort,
we can write out runs of ~2×B internally sorted pages

 This is referred to as replacement sort

12

4

INPUT

8

10

CURRENT SET

2

3

5

OUTPUT

IDEA: Pick the tuple in the current set with the smallest value that is greater than
the largest value in the output buffer and append it to the output buffer

Replacement Sort

 With a more aggressive implementation of B-way sort,
we can write out runs of ~2×B internally sorted pages

 This is referred to as replacement sort

12

4

INPUT

8

10

CURRENT SET

2

3

5

OUTPUT

When do we terminate the current run and start a new one?

Blocked I/O and Double Buffering
 So far, we assumed random disk accesses

 Would cost change if we assume that reads and writes
are done sequentially?

 Yes

 How can we incorporate this fact into our
cost model?
 Use bigger units (this is referred to as Blocked I/O)

 Mask I/O delays through pre-fetching (this is
referred to as double buffering)

Blocked I/O

 Normally, we go with‘B’ buffers of size (say) 1 page

INPUT 1

INPUT 5

OUTPUT

DiskDisk

INPUT 2

.

Blocked I/O

 Normally, we go with‘B’ buffers of size (say) 1 page

 INSTEAD: let us go with B/b buffers, of size ‘b’ pages

3 Main memory buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk

.

Blocked I/O

 Normally, we go with‘B’ buffers of size (say) 1 page

 INSTEAD: let us go with B/b buffers, of size ‘b’ pages

 What is the main advantage?

 Fewer random accesses (as some of the page will be
arranged sequentially!)

 What is the main disadvantage?

 Smaller fan-in and accordingly larger number of passes!

Double Buffering

 Normally, when, say ‘INPUT1’ is exhausted

 We issue a ‘read’ request and

 We wait …

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2

.

Double Buffering

 INSTEAD: pre-fetch INPUT1’ into a `shadow block’

 When INPUT1 is exhausted, issue a ‘read’

 BUT, also proceed with INPUT1’

 Thus, the CPU can never go idle!

OUTPUT

OUTPUT'

Disk Disk

INPUT 1

INPUT k

INPUT 2

INPUT 1'

INPUT 2'

INPUT k'

block size
b

B main memory buffers, k-way merge

Next Class

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Continue…

