Database Applications (15-415)

DBMS Internals- Part IV
Lecture 14, March 10, 2015

Mohammad Hammoud

e dgdgglagy gl =i o aly

Carnegie Mellon University Qatar

Today...

= |Last Two Sessions:

= DBMS Internals- Part Il
= Tree-based indexes: ISAM and B+ trees

= Data Warehousing/ Data Mining (by Prof. Christos Faloutsos)

= Today’s Session:

= DBMS Internals- Part IV
= Tree-based (B+ tree- cont’d) and Hash-based indexes

= Announcements:
= P1 grades are out
= Midterm grades are out
= Mid-course grades are out
= PS3 will be posted online by tomorrow
A g el gl =i ol

Carnegie Mellon University Qatar

DBMS Layers

\ Queries /

Query Optimization
and Execution

Transaction
Manager

Lock
Manager

——————————————————————————————

H Recovery

Continued...

Manager

Outline

B+ Trees with Duplicates /
B+ Trees with Key Compression

Bulk Loading of a B+ Tree

)A Primer on Hash-Based Indexing

Static Hashing

Extendible Hashing

P dgdyglagn Gl =i 2 aly

Carnegie Mellon University Qatar

B+ Trees With Duplicates

= Thus far, we only discussed unique indices (no duplicate
keys- i.e., several data entries with the same key value)

= How can we handle duplicate keys?

1.

Use overflow pages to keep all entries of a given key value
on a single leaf page (natural for ISAM)

Treat duplicates like any other entries
= Several leaf pages will contain entries of a given key value

= How to search/delete?

Make the rid value part of the search key

Outline

B+ Trees with Duplicates
B+ Trees with Key Compression /

Bulk Loading of a B+ Tree

)A Primer on Hash-Based Indexing

Static Hashing

Extendible Hashing

P dgdyglagn Gl =i 2 aly

Carnegie Mellon University Qatar

The Height of a B+ Tree

What are the factors that define the height of a B+ tree?

= Number of data entries
= The order of occupancy

The order of occupancy dictates the fan-out of the tree
The height of the tree is proportional to log,,, . (# of DEs)

What is the number of disk I/Os to retrieve a data entry?
" 0G4, ou (# Of DEs)

How to minimize the height?
= Maximize the fan-out

Towards Maximizing the Fan-Out?

= What does an index entry contain?
= A search key
= A page pointer

" Hence, the size of an index entry depends primarily on the
size of the search key value!

= What if the search key values are very long?
= Not many index entries will fit on a page
= Fan-out will be small
" The height of the tree will be large

Key Compression: A Way to Maximize
the Fan-Out

" How can we reduce the size of search key values?

= Apply key compression, especially that keys are only
used to direct traffic to the appropriate leaves

C

David Smith

Devarakonda

< David Smith/

\= David Smith && < Devarakonda

Da

De

<Da/

Is this fully correct?

\= Da && < De

4 More room)
for additional
index entries

in the same

_ Page!l)

Key Compression: A Way to Maximize
the Fan-Out (Cont’d)

= What about the following example?

Danial Lee David Smith Devarakonda
< David Smith /
Dante Wu Darius Rex Davey Jones
Dan Dav De
< Dav /
A’ ——————————
\\
Dante Wu Darius Rex Davey Jones)
V4

-
~~~~~~~~

> Dav

2

To ensure correct semantics, the largest key value in the left sub-tree
and the smallest key value in the right sub-tree must be examined!




Outline

B+ Trees with Duplicates

B+ Trees with Key Compression

Bulk Loading of a B+ Tree /

)A Primer on Hash-Based Indexing

Static Hashing

Extendible Hashing

P dgdyglagn Gl =i 2 aly

Carnegie Mellon University Qatar



B+ Tree: Bulk Loading

= Assume a collection of data records with an existing B+ tree
index on it

= How to add a new record to it?

= Use the B+ tree insert() function

= What if we have a collection of data records for which we
want to create a B+ tree index? (i.e., we want to bulk load
the B+ tree)

= Starting with an empty tree and using the insert() function
for each data record, one at a time, is expensive!

" This is because for each entry we would require starting again
from the root and going down to the appropriate leaf page



B+ Tree: Bulk Loading

= \What to do?

» |nitialization: Sort all data entries, insert pointer to first (leaf)
page in a new (root) page

Root\~

Sorted pages of data entries; not yet in B+ tree

-

3*| 4% ||| 6% | 9* | |10*|11*| |12%13* |20*22*| |23*|31* [35*[36*| |38*41*| |44*




B+ Tree: Bulk Loading

= \What to do?

= Add one entry to the root page for each subsequent page of
the sorted data entries (i.e., <lowest key value on page,
pointer to the page>)

Root\~

Sorted pages of data entries; not yet in B+ tree

-

3*| 4% ||| 6% | 9* | |10*|11*| |12%13* |20*22*| |23*|31* [35*[36*| |38*41*| |44*




B+ Tree: Bulk Loading

= \What to do?

= Add one entry to the root page for each subsequent page of
the sorted data entries (i.e., <lowest key value on page,
pointer to the page>)

Root\~

3*| 4% | | 6% 9* |[|10*|11*| |12%13* |20*22*| |23*|31* [35*[36*| |38*41*| |44*




B+ Tree: Bulk Loading

= \What to do?

= Add one entry to the root page for each subsequent page of
the sorted data entries (i.e., <lowest key value on page,
pointer to the page>)

Root\~

3*| 4% | | 6% 9% | |10*|11*|[|12%13* |20*22*| |23*|31* [35*[36*| |38*41*| |44*




B+ Tree: Bulk Loading

= What to do?
= Split the root and create a new root page

Root\~

3*| 4% | | 6% 9* | |10*|11*| |12%13* || 20*22*| |23*|31* [35*[36*| |38*41*| |44*




B+ Tree: Bulk Loading

= What to do?
= Split the root and create a new root page

Root\A

10
/' ~__ ‘oush up’ the middle key
6 12
y v
3% | 4% | | 6% | 9% | |10*|11*| [12%13% ||20%22% |23*|31% |35*36*| |38*41*| |44*




B+ Tree: Bulk Loading

= \What to do?

= Continue by inserting entries into the right-most index page
just above the leaf page; split when fills up

Root\A
10
S o~

6 12

3*| 4% | | 6% 9* | |10*|11*| |12%13* || 20*22*| |23*|31* [35*[36*| |38*41*| |44*




= \What to do?

B+ Tree: Bulk Loading

= Continue by inserting entries into the right-most index page
just above the leaf page; split when fills up

]

Root

10

20

=

v

6

12

23

35

A |
%\//\jA

; ! \
2\ //\L 2\

Data entry pages
not yet in B+ tree

3*

4*

6*

9*| |1101411%

124

134

201

227

234311

35%

36%

387417 (444




= \What to do?

B+ Tree: Bulk Loading

= Continue by inserting entries into the right-most index page
just above the leaf page; split when fills up

Root

20

10

~

35|,

|

Data entry pages

\ not yet in B+ tree

6 12 23 38
£\ J £\ £\ l £\ / ya \\l £\ / f\\
3*[4*| | 6% 9*| |10%11* (129137 (204224 [23%31% |35%36*| |38141%|(44%




B+ Tree: Bulk Loading

* What is the cost of bulk loading?

1. Creating the leaf-level entries

= Scanning the data entries and writing out all the leaf-level
entries (i.e., K*)

* Hence, (R+E) I/Os, where R is the number of pages containing
data entries and E is the number of pages containing K*entries

2. Sorting leaf-level entries
= 3E1/Os (when discussing sorting, we will see how)

3. Building the index from the sorted leaf-level entries

* The cost of writing out all index-level pages (will be an exercise
in the recitation)!



Outline

B+ Trees with Duplicates
B+ Trees with Key Compression

Bulk Loading of a B+ Tree

v

)A Primer on Hash-Based Indexing

Static Hashing

Extendible Hashing

P dgdyglagn Gl =i 2 aly

Carnegie Mellon University Qatar



Hash-Based Indexing

* What indexing technique can we use to support range
searches (e.g., “Find s_name where gpa >= 3.0)?

" Tree-Based Indexing

= What about equality selections (e.g., “Find s_name
where sid = 102”7?

=" Tree-Based Indexing
= Hash-Based Indexing (cannot support range searches!)

" Hash-based indexing, however, proves to be very useful
in implementing relational operators (e.g., joins)



Outline

B+ Trees with Duplicates
B+ Trees with Key Compression

Bulk Loading of a B+ Tree

)A Primer on Hash-Based Indexing

Static Hashing /

Extendible Hashing

P dgdyglagn Gl =i 2 aly

Carnegie Mellon University Qatar



Static Hashing

= A hash structure (or table or file) is a generalization of
the simpler notion of an ordinary array
" |n an array, an arbitrary position can be examined in O(1)

" A hash function h is used to map keys into a range of
bucket numbers

O —> -+ - =
h(key) mod N 2 T S N
key < :> T - °° With Static Hashing,
allocated (as needed)
With Static Hashing, when corresponding
allocated sequentially buckets become full
and never de-allocated N-1 | L /71

—_———
—_——
—_——
—_——
~——
~——

Primary bucket pages Ooverflow pages *



Static Hashing

Data entries can be any of the three alternatives (A (1), A
(2) or A (3)- see previous lecture)

Data entries can be sorted in buckets to speed up searches

The hash function h is used to identify the bucket to which
a given key belongs and subsequently insert, delete or
locate a respective data record

= A hash function of the form h(key) = (a * key + b) works well
in practice

A search ideally requires 1 disk I/0, while an insertion or a
deletion necessitates 2 disk I/Os



Static Hashing: Some Issues

= Similar to ISAM, the number of buckets is fixed!
= Cannot deal with insertions and deletions gracefully

" Long overflow chains can develop easily and degrade
performance!

= Pages can be initially kept only 80% full

" Dynamic hashing techniques can be used to fix
the problem

= Extendible Hashing (EH)
" Liner Hashing (LH)



Outline

B+ Trees with Duplicates
B+ Trees with Key Compression

Bulk Loading of a B+ Tree

)A Primer on Hash-Based Indexing

Static Hashing

Extendible Hashing /

P dgdyglagn Gl =i 2 aly

Carnegie Mellon University Qatar



Directory of Pointers

= How else (as opposed to overflow pages) can we add a
data record to a full bucket in a static hash file?

= Reorganize the table (e.g., by doubling the number of
buckets and redistributing the entries across the new
set of buckets)

= But, reading and writing all pages is expensive!

" |n contrast, we can use a directory of pointers to buckets

= Buckets number can be doubled by doubling just the
directory and splitting “only” the bucket that overflowed

= The trick lies on how the hash function can be adjusted!



Extendible Hashing

= Extendible Hashing uses a directory of pointers to buckets

GLOBAL DEPTH

4* 12* 32* 16*| Bucket A
" The result of applying a hash N /

function h is treated as a wl 7 I 5r ops Bucket B
binary number and o1 =
the last d bits are 0]~ [T Bucket C
- * ucket
interpreted as an 11 N
offset into the directory \

DIRECTORY 15% 7% 19 Bucket D

= dis referred to as the global depth DATA PAGES

of the hash file and is kept as part
of the header of the file



Extendible Hashing: Searching for Entries

= To search for a data entry, apply a hash function h to the
key and take the last d bits of its binary representation to
get the bucket number

= Example: search for 5*

2

% > 4* 12* 32* 16* Bucket A

—7 01 —~— ,‘_‘\
5= 101 """""" \ 1*'\ 5* ’\21* Bucket B

10 \ “ual
\ N Bucket C

11 R 10
DIRECTORY

DATA PAGES



Extendible Hashing: Inserting Entries

" An entry can be inserted as follows:
" Find the appropriate bucket (as in search)

" Split the bucket if full and redistribute contents
(including the new entry to be inserted) across
the old bucket and its “split image”

" Double the directory if necessary

" Insert the given entry



Extendible Hashing: Inserting Entries

* Find the appropriate bucket (as in search), split the bucket
if full, double the directory if necessary and insert the
given entry

" Example:insert 13*

00 J 4% 10% 30% 16* Bucket A
-7 01 ~
13=1101 | 1+ 5x 2qr 135 BuUcketB
10 \\ Bucket C
u

l *

11 ~J 0
\ 15% 7+ 10* Bucket D

DIRECTORY




Extendible Hashing: Inserting Entries

* Find the appropriate bucket (as in search), split the bucket
if full, double the directory if necessary and insert the
given entry

* Example: insert 20*
ample: insert 20% FULL, hence, split and redistribute!

4
7 % —te—— 4* 12* 32* 16* Bucket A
01 —
20=10100 \ 1* B* 21% 13* Bucket B
10 \\ Bucket C
u
*
11 q 10

DIRECTORY



Extendible Hashing: Inserting Entries

* Find the appropriate bucket (as in search), split the bucket
if full, double the directory if necessary and insert the

given entry

......... 30% 16+
- D * s /
Example: insert 20 w0 ~
,,,,, I 1* 5% 21* 13*
"""" 01
"""" 10 —
20=10100 -
11 \\\\\\\* 10*
DIRECTORY
15* 7* 19*
[ s this enough? ] e

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(‘splitimage’
of Bucket A)



Extendible Hashing: Inserting Entries

* Find the appropriate bucket (as in search), split the bucket
if full, double the directory if necessary and insert the
given entry

3% 16* Bucket A
= Example: insert 20 w /
7 e Lx o1x 19% Bucket B
—] | 1* 5+ 21* 13
,,,,,, 01
,,,,,, 10 ~
20=10100 T~ Bucket C
11 10*
DIRECTORY
15% 7% 19 Bucket D
Double the directory and
1 * * D)k Bucket A2
increase the global depth ar 12720 Csplit image’

of Bucket A)



Extendible Hashing: Inserting Entries

* Find the appropriate bucket (as in search), split the bucket
if full, double the directory if necessary and insert the

given entry GLOBAL DEPTH 327167 Bucket A
. " el
" Example: insert 207 fooo] 7] J1m 5 2113] Buckets
P ;"'"’ ]
These two bits indicate a data entry that 001
belongs to one of these two buckets R}'\Olo —
| 031 N 10* Bucket C

iiry
J tioo; %
: o e 101
The third bit distinguishes between these %

15% 7% 19+
two buckets! 10 |~ Bucket D
1m |
But, is it necessary always to DIRECTORY Y 4« 12720 | Bucket A2
double the directory? (‘splitimage’

of Bucket A)




Extendible Hashing: Inserting Entries

* Find the appropriate bucket (as in search), split the bucket
if full, double the directory if necessary and insert the
given entry

GLOBAL DEPTH 32*16% Bucket A

? %ULL, hence, split!

u Example |nsert 9* 000 s 1* 5* 21*137 Bucket B
7001 | —]
,,,,,,,,, 010 |~

9=1001 | 011 \ 10* Bucket C

15* 7* 19* Bucket D

EEVAVANY

DIRECTORY 4% 12* 20* Bucket A2
(‘split image’
of Bucket A)




Extendible Hashing: Inserting Entries

* Find the appropriate bucket (as in search), split the bucket
if full, double the directory if necessary and insert the
given entry

GLOBAL DEPTH 32*16% Bucket A

= Example: insert 9* 000 | 7 1% o* Bucket B
i
,,,,,,, 010 | ——

,,,,, 10* Bucket C

9=1001 011

100 |

101 15% 7% 19* Bucket D

10 | 7
[ Almost there... ] 11 ><
4* 12*20* | Bucket A2

(‘splitimage‘ of A)
DIRECTORY

5% 21*13*| Bucket B2
(‘split image‘ of B)




Extendible Hashing: Inserting Entries

* Find the appropriate bucket (as in search), split the bucket
if full, double the directory if necessary and insert the

given entry

= Example:insert 9*

9 = 1001

4 )
There was no need to

N double the directory! )

directory?

&

4 )
When NOT to double the

J

GLOBAL DEPTH

-

DIRECTORY

N

32*16% Bucket A
1* 9* Bucket B
10* Bucket C
15* 7* 19* Bucket D
4* 12* 20* Bucket A2
(‘splitimage‘ of A)
5* 21*13*| Bucket A2

(‘split image‘ of A)



Extendible Hashing: Inserting Entries

* Find the appropriate bucket (as in search), split the bucket
if full, double the directory if necessary and insert the

given entry LOCAL DEPTH 23
GLOBAL ?PTH 32161 Bucket A
. N
= Example:insert 9 o[ 7] e Bucket B
/
7 001 7
P 010 —_— i
,,,,,, | 10* Bucket C
9=1001 - 011 ucke
100 | 2
4 N\ 101 \; 15* 7% 19* | BucketD
If a bucket whose localdepth | .. — X1\ ——
, 10 | 7\ 5
equals to the global depth is 11 )
: , 4* 12*20* | Bucket A2
split, the directory must be S )
— (‘split image*’ of A)
doubled DIRECTORY \ |3
\ ) 5 21*13* Bucket A2

(‘split image‘ of A)



Extendible Hashing: Inserting Entries

" Example: insert 9*

[ Repeat...

]

9=1001

(i.e., 2) is less than the
global depth (i.e., 3), NO
need to double the

\_ directory

4 Because the local depth )

J

LOCAL DEPTH-Z—13
GLOBAL DEPTH 327167 Bucket A
? / 5 FULL, hence, split!
000 | 7 1* 5% 21*131 Bucket B
7 001 -1 /S
011 N 10* Bucket C
100 %>< _______
101 2
110 / 15* 7% 19* Bucket D
11 | —
3
DIRECTORY  N'jx 12+20% | Bucket A2

(‘splitimage’
of Bucket A)



Extendible Hashing: Inserting Entries

" Example: insert 9*

[ R i ] LOCAL DEPTH-Z—7 3.
epeat... -

P GLOBAL ?PTH 32*161 Bucket A
00| 7 1% o Bucket B

7001 T

e 010 —_ i
"""" 10* Bucket C

9-1001 | 011

100 | 2
o1 15* 7% 19* Bucket D
10 [ 7 ><3

(‘splitimage’ of A)

DIRECTORY |3

5% 21*13*| Bucket B2
(‘splitimage* of B)




Extendible Hashing: Inserting Entries

" Example: insert 9*

[ R t ] LOCAL DEPTH-Z—7 3
e ea [N N ] *
P GLOBAL 1§PTH 32*164 Bucket A
....... L i
000 1* 9 Bucket B
//7
7 001 5
e O 10 —_ i
""" ) 10* Bucket C
9=1001 |- 011

100 | 2
101 \ 15* 7* 19* Bucket D

FINAL STATE! 110 /\‘><3
111 4x 12920 | Bucket A2

(‘splitimage‘ of A)

DIRECTORY \ |3

5% 21*13*| Bucket B2
(‘splitimage’ of B)




Extendible Hashing: Inserting Entries

" Example: insert 20*

[

Repeat...

]

20=10100

&

Because the local depth

and the global depth are

both 2, we should double
the directory!

J

LOCAL DEPTH L 5

4* 12* 32* 16*

GLOBAL DEPTH

> 00 / 1* 5* 21* 13*

=
/

DIRECTORY s

15* 7* 19*

DATA PAGES

FULL, hence, split!

Bucket A

Bucket B

Bucket C

Bucket D



Extendible Hashing: Inserting Entries

" Example: insert 20*

| Repeat. | woomomemz 2

161 Bucket A
GLOBAL ?PTH 32

7 00 / / 1* 5* 21*13% Bucket B

””””” 01 / SRR

""""" 10 |~ |2
20=10100 |~ 1 T~ 10~ Bucket C

\2
. DIRECTORY 15* —— Bucket D

Is this enough?

4* 12* 20* Bucket A2

(‘splitimage’

of Bucket A)



Extendible Hashing: Inserting Entries

" Example: insert 20*

[ Repeat... ] LOCAL DEPTH-Z— |2
GLOBAL DEPTH 32*167 Bucket A
000 | 7 1 5 21713} Bucket B
001 | — |
010 | ~ 2
011 10* Bucket C

Bucket D

AN

100 %>< _______

101 2
/ 15* 7* 19*
——

. 110
[ Is this enough? ] i

DIRECTORY A* 12* 20* Bucket A2
(‘splitimage’
of Bucket A)




Extendible Hashing: Inserting Entries

" Example: insert 20*

277N

[ Repeat. |  wewomwm A )
GLOBAL DEPTH "7 32"16Y BucketA
000 |~ 1* 5% 21*131 Bucket B

001 — /

FINAL STATE! 010 |~ 2
011 \ 10* Bucket C

2

101 2
110 / 15* 7% 19* Bucket D

SR el
DIRECTORY  N'73712+20¢ | Bucket A2

(‘splitimage’
of Bucket A)



Next Class

\ Queries /

Query Optimization
and Execution

Hash-based Indexes (Cont’d)
and External Sorting

Transaction

i
I Recovery

Manager

Lock
Manager




