Database Applications (15-415)

DBMS Internals- Part Ill
Lecture 12, February 22, 2015

Mohammad Hammoud

}_I.:_ﬁ?\:ﬂ elia § ___Jg
e Mellon University Qatar

Today...

Last Session:

= DBMS Internals- Part Il
= Buffer Management
= Files and Access Methods (file organizations)

Today’s Session:

= DBMS Internals- Part Il
= Tree-based indexes: ISAM and B+ trees

Announcements:
= PS2 grades are out

= The midterm exam is on Tuesday Feb 24 (all materials
are included)

= Next week is off (Spring break)- classes will resume on March 8
= P2is due on March 15

= PS3 will be out after the Spring break L igd,elagn ale=ia o s

Carnegie Mellon University Qatar

DBMS Layers

\ Queries /

Query Optimization
and Execution

Relational Operators

Transaction
Manager

Lock
Manager

——————————————————————————————

"k Files and Access Methods I
Recovery

Buffer Management Manager

| Disk Space Management

Outline

Why Indexing?

Storing Data Records and Index Types

> Indexed Static Access Method (ISAM) Trees

B+ Trees

Carnegie Mellon University Qatar

Motivation

= Consider a file of student records sorted by GPA

Page 1 Page 2 Page 3 Page N Data File

= How can we answer a range selection (E.g., “Find all
students with a GPA higher than 3.0”)?

* What about doing a binary search followed by a scan?
= Yes, but...

* What if the file becomes “very” large?
" Cost is proportional to the number of pages fetched
" Hence, may become very slow!

Motivation

= What about creating an index file (with one entry per
page) and do binary search there?

Index Entry = <first key on the page, pointer to the page>
A

Ki1|Pq| Ka|Po s - = KN |PN Index File

L

Page 1 Page 2 “ e Page N Data File

= But, what if the index file becomes also “very” large?

Motivation

= Repeat recursively!

Non-leaf
Pages v

- T A A A

S o o S o o S o o S © o

Leaf
Pages

Each tree page is a disk block and all data records reside (if chosen to be
part of the index) in ONLY leaf pages

How else data records can be stored?

Outline

Why Indexing?

Storing Data Records and Index Types /

> Indexed Static Access Method (ISAM) Trees

B+ Trees

Carnegie Mellon University Qatar

Where to Store Data Records?

" |In general, 3 alternatives for “data records” (each
referred to as K*) can be pursued:

= Alternative (1): K* is an actual data record with key k

= Alternative (2): K* is a <k, rid> pair, where rid is the
record id of a data record with search key k

= Alternative (3): K* is a <k, rid-list> pair, where rid-list
is a list of rids of data records with search key k

Where to Store Data Records?

" |In general, 3 alternatives for “data records” (each
referred to as K*) can be pursued:

()

Alternative (1): Leaf pages contain the actual data (i.e., the data records)
& J

4 N
Alternative (2): Leaf pages contain the <key, rid> pairs and actual data

records are stored in a separate file

4 N
Alternative (3): Leaf pages contain the <key, rid-list> pairs and actual data

records are stored in a separate file
& J

The choice among these alternatives is orthogonal to the indexing technique

Clustered vs. Un-clustered Indexes

" |ndexes can be either clustered or un-clustered

® Clustered Indexes:

" When the ordering of data records is the same as
(or close to) the ordering of entries in some index

= Un-clustered Indexes:

" When the ordering of data records differs from the
ordering of entries in some index

Clustered vs. Un-clustered Indexes

= |s an index that uses Alternative (1) clustered or
un-clustered?
= Clustered

" |s an index that uses Alternative (2) or (3)

clustered or un-clustered?

= Clustered “only” if data records are sorted on the
search key field

" |n practice:
= A clustered index is an index that uses Alternative (1)
= |ndexes that use Alternatives (2) or (3) are un-clustered

Outline

Why Indexing?

Storing Data Records and Index Types

> Indexed Static Access Method (ISAM) Trees /

B+ Trees

Carnegie Mellon University Qatar

ISAM Trees

" |ndexed Sequential Access Method (ISAM) trees

are static
/_ Root ~—au
40
Non-Leaf
Pages
20 | | 33 51 | | 63
/ | |

Leaf 10* 15+ 20* 27% 33* 37* 40* ‘ 46* 51* 55* *
Pages

[E.g., 2 Entries Per Page

ISAM Trees: Page Overflows

» What if there are a lot of insertions after creating
the tree?

Non-leaf i
Pages coe
— /& \ [&\ [&\ [\
Leaf .- oo .- .-
Pages)) %, A 7
Overflow ------= > N ’ .-
page

Primary pages

ISAM File Creation

= How to create an ISAM file?

= All leaf pages are allocated sequentially and
sorted on the search key value

" |f Alternative (2) or (3) is used, the data records
are created and sorted before allocating
leaf pages

" The non-leaf pages are subsequently allocated

ISAM: Searching for Entries

= Search begins at root, and key comparisons direct it
to a leaf

= Search for 27*

Root T=au

T

20 33 51 | | 63

ISAM: Inserting Entries

= The appropriate page is determined as for a search, and the
entry is inserted (with overflow pages added if necessary)

" |nsert 23*
Root =
|40 |
20 33 51 | 63
/.
10* 15* 20* 27* 33% 37* 40* | 46* 51* 55* 63* 97*

1

23*

ISAM: Inserting Entries

= The appropriate page is determined as for a search, and the
entry is inserted (with overflow pages added if necessary)

" |nsert48*
Root =
40 |_
/’ \\
20 | | 33 51 | | 63
10* | 15* 20% | 27* 33* | 37* 40* | 46* 51* | 55* 63* | 97*
Y
23 A8*

ISAM: Inserting Entries

= The appropriate page is determined as for a search, and the
entry is inserted (with overflow pages added if necessary)

" |nsert41*
Root =
40 J
/’ \\
20 33 51 63
10* 15* 20* 27* 33* 37* 40* | 46* 51* 55* 63* 97*
~
23* ag* | 41*

ISAM: Inserting Entries

= The appropriate page is determined as for a search, and the
entry is inserted (with overflow pages added if necessary)

=" |nsert42*
Root =
40 |
/’ \\
20 33 51 63
10* 15* 20* 27* 33* 37* 40* | 46* 51* 55* 63* 97*
Y
23* 48* | 41*

Y
Chains of overflow pages can easily develop! 40

ISAM: Deleting Entries

The appropriate page is determined as for a search, and the

entry is deleted (with ONLY overflow pages removed when

becoming empty)

Delete 42*

Root =

40

\\

P

20

33

/|

T~

51

63

10* | 15* 20*

27*

33*

37*

40* | 46+

51*

55*

63*

97*

RV

23*

48*

41*

42*

ISAM: Deleting Entries

The appropriate page is determined as for a search, and the

entry is deleted (with ONLY overflow pages removed when

becoming empty)

Delete 42*

Root =

40

\\

P

20

33

/|

T~

51

63

10* | 15* 20*

27*

33*

37*

40* | 46+

51*

55*

63*

97*

RV

23*

48*

41*

ISAM: Deleting Entries

The appropriate page is determined as for a search, and the

entry is deleted (with ONLY overflow pages removed when

becoming empty)

Delete 42*

Root =

40

\\

P

20

33

/|

T~

51

63

10* | 15* 20*

27*

33*

37*

40* | 46+

51*

55*

63*

97*

RV

23*

48 | 41*

ISAM: Deleting Entries

The appropriate page is determined as for a search, and the

entry is deleted (with ONLY overflow pages removed when

becoming empty)

Delete 51* Root

20 33

—au

40

\\

T~

51

63

10* | 15* 20* 27*

33*

37*

40* | 46*

51*

55*

63*

97*

48 | 41*

Note that 51 still appears in an index entry, but not in the leaf!

ISAM: Deleting Entries

The appropriate page is determined as for a search, and the

entry is deleted (with ONLY overflow pages removed when
becoming empty)

Delete 55*

Root =

40

\\

P

20

33

/|

T~

51

63

\

10* | 15* 20*

27*

33*

37*

40* | 46+

55*

63* 97*

N\

23*

48 | 41*

Primary pages are NOT removed, even if they become empty!

ISAM: Some Issues

Once an ISAM file is created, insertions and deletions affect only
the contents of leaf pages (i.e., ISAM is a static structure!)

Since index-level pages are never modified, there is no need to
lock them during insertions/deletions

= Critical for concurrency!

Long overflow chains can develop easily
® The tree can be initially set so that ~20% of each page is free

If the data distribution and size are relatively static, ISAM might
be a good choice to pursue!

Outline

Why Indexing?

Storing Data Records in Indexes and Index Types

) Indexed Static Access Method (ISAM) Trees

B+ Trees /

Carnegie Mellon University Qatar

Dynamic Trees

= |SAM indices are static

= Long overflow chains can develop as the file grows, leading to
poor performance

= This calls for more flexible, dynamic indices that adjust
gracefully to insertions and deletions

* No need to allocate the leaf pages sequentially as in ISAM

= Among the most successful dynamic index schemes is
the B+ tree

B+ Tree Properties

= Fach node in a B+ tree of order d (this is a measure

of the capacity of a tree):
= Has at most 2d keys

" Has at least d keys (except the root, which may
have just 1 key)

= All leaves are on the same level
" Has exactly n-1 keys if the number of pointers is n

Points to a sub-tree
in which all keys are
greater than or equal k,

Points to a sub-tree

1
1 P1 Py
in which all keys are |+ H.H k ‘ ‘ ‘
1
less than k, :
]

—-——

3
=
e

h—
~~-~
L]
-

Points to a sub-tree in which all keys are greater
than or equal k, and less than to k,

B+ Tree: Searching for Entries

Search begins at root, and key comparisons direct it
to a leaf (as in ISAM)

Example 1: Search for entry 5*

Root \

* 16*

* | 39*

B+ Tree: Searching for Entries

Search begins at root, and key comparisons direct it
to a leaf (as in ISAM)

Example 2: Search for entry 15*

Root

AN

/

* | 39*

X

15* is not found!

B+ Trees: Inserting Entries

" Find correct leaf L

" Put data entryonto L
* |f L has enough space, done!
* Else, split L into L and a new node L,
" Re-partition entries evenly, copying up the middle key

* Parent node may overflow

= Push up middle key (splits “grow’ trees; a root split
increases the height of the tree)

B+ Tree: Examples of Insertions

" |nsert entry 8*

Root \

* | 39*

Leaf is full, hence, split!

B+ Tree: Examples of Insertions

" |nsert entry 8*

Root \

13

17

24

30

19*

20*

22*

24*

27*

29*

33*

34*

38*

39*

The middle key (i.e., 5) is “copied up”
and continues to appear in the leaf

B+ Tree: Examples of Insertions

" |nsert entry 8*

Root \

* 34*

38*

39*

5 || 13

17

24

30

> 2d keys and 2d + 1 pointers

Parent is full, hence, split!

B+ Tree: Examples of Insertions

" |nsert entry 8*

Root \

24 30
TN N
22% 24* | 27*| 29+ 33*| 34* [38* [39*
The middle key (i.e., 17)
is “pushed up”
17 ||=—
5 (| 13 24| 30

4 b/

B+ Tree: Examples of Insertions

17 ||
} A
" |nsert entry 8
2411 30
Root
£ N\
2 | 3* | 5% | 7*)14* 16* 19* 20*| 22* 24* | 27*| 29* 33* | 34*[38* | 39*
\N~ ’f
K O\
2* 3* 5* 7* 8*

B+ Tree: Examples of Insertions

" |nsert entry 8*

FINAL TREE! oo -

5 13 j 24 30
4 N a N
2% 3* 5 7*| 8* 14*| 16* 1979 20% 22* 24*| 27* 29* 33* 34* 38*| 39*

Splitting the root lead to an increase of height by 1!

é)

What about re-distributing entries instead of splitting nodes?

\ S

B+ Tree: Examples of Insertions

" |nsert entry 8*

* 34*

38*

39*

Leaf is full, hence, check the sibling

B+ Tree: Examples of Insertions

" |nsert entry 8*

Do it through the parent

Root \

24

N

2* 3* 5*

7*

14*

16*

19*

20*

22*

24*

27*

29*

33*

34*

38*

39*

" |nsert entry 8*

B+ Tree: Examples of Insertions

Do it through the parent

Root \

8

17

24

30

%/_\ v Ve

2*

3*

5*

7*

8*

14*

16*

19*

20*

22*

24*

27*

29*

33*

34*

38*

39*

“Copy up” the new low key value!

But, when to redistribute and when to split?

Splitting vs. Redistributing

= |Leaf Nodes

" Previous and next-neighbor pointers must be updated
upon insertions (if splitting is to be pursued)

" Hence, checking whether redistribution is possible does
not increase |/O

* Therefore, if a sibling can spare an entry, re-distribute

= Non-Leaf Nodes

" Checking whether redistribution is possible usually
increases |I/0O

= Splitting non-leaf nodes typically pays off!

B+ Insertions: Keep in Mind

Every data entry must appear in a leaf node;
hence, “copy up” the middle key upon splitting

When splitting index entries, simply “push up” the
middle key

Apply splitting and/or redistribution on leaf nodes

Apply only splitting on non-leaf nodes

B+ Trees: Deleting Entries

= Start at root, find leaf L where entry belongs

= Remove the entry
= |f L is at least half-full, done!
" If L underflows

" Try to re-distribute (i.e., borrow from a “rich
sibling” and “copy up” its lowest key)

" If re-distribution fails, merge L and a “poor
sibling”
= Update parent
" And possibly merge, recursively

B+ Tree: Examples of Deletions

= Delete 19*

Root
17 l‘>

5 13 j 24 30

SN e o SN e,

Removing 19* does not cause an underflow

* 3* 5* 7* 8* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* * *

B+ Tree: Examples of Deletions

= Delete 19*

Root
17

5 13 j 24 30

4 N / ~
1 14*)16*

* 3* S*| 7*| 8*

FINAL TREE!

20%| 22* 24*| 27%29* 33*| 34* 38*| 39*

B+ Tree: Examples of Deletions

= Delete 20*

/' - L\

5 || 13 j 24 || 30
4 N y N
/ — \ x& s S £ x&
2+ | 3 5+ [7+] 8¢ 14+ 16+ (20 22+ 24| 27+ 207 334 34+ 38+ 30+
P

~ -
—————————

Deleting 20* causes an underflow; hence, check a sibling for redistribution

B+ Tree: Examples of Deletions

= Delete 20*

Root

17
5 || 13 j 24 || 30
4 N 2 N
/ X \ x& A / i el ----/:’.N\s
2| 3 5| 77| 8 14*| 16* 20%| 22* ([|24+| 27| 20~ B3+| 34+ 38%| 39*

S -
—————————

The sibling is ‘rich’ (i.e., can lend an entry); hence, remove 20* and redistribute!

= Delete 20*

B+ Tree: Examples of Deletions

/'

Root
17

1

/s

N

m

\ ‘\\\\\\\\\\\\\\\\“~ﬁ>

Is it done?

24

30

y

m

T

* 3*

5*

3
7*

8*

x&
14*| 16*

22*

24~

27*

29*

33*

34*

38*

39*

“Copy up” 27%, the lowest value in the leaf from which we borrowed 24*

= Delete 20*

B+ Tree: Examples of Deletions

/'

Root
17

1

/s

N

m

\ ‘\\\\\\\\\\\\\\\“‘1>

27

30

y

m

T

* 3*

5*

3
7*

8*

x&
14*| 16*

22*

24~

27*

29*

33*

34*

38*

39*

“Copy up” 27%, the lowest value in the leaf from which we borrowed 24*

B+ Tree: Examples of Deletions

= Delete 20*

Root
17

5 13 j 27 30

4 N / ~
1 14*)16*

* 3* S*| 7*| 8*

FINAL TREE!

22%|24* 27*|29* 33*| 34* 38*| 39*

B+ Tree: Examples of Deletions

= Delete 24*

/' - L\,

5 || 13 j 27 || 30
y N\ y \
/ S\ \ x& m_---#%\ x&
2% | 3* 5| 7% | 8* 14*| 16* (| |22%| 24 P27+ (29 33+ 34% 38*| 39"

-~ -
-

The affected leaf will contain only 1 entry and the sibling cannot lend
any entry (i.e., redistribution is not applicable); hence, merge!

B+ Tree: Examples of Deletions

= Delete 24*

“Toss” 27 because the page that it was
pointing to does not exist anymore!

17

P,

A
s
A
Ao
4 1
Il !
,l
\—s ------
- S
’ ~
(27 30)
\\; I’

2% | 3* 5| 7+| 8 14*| 16* C,']EE* 24> 27*(29* ot 33+ 34+{ 38%| 39*
\ -~ T I oSS
Merge A > -
22* | 27* | 29* 33* | 34* | 38* | 39*

B+ Tree: Examples of Deletions

= Delete 24* Is it done?

Root [T No, but almost there...

5 13j \T 30
4 N

SN e

22% | 27* | 29* 33* | 34* | 38* | 39*

B+ Tree: Examples of Deletions

This entails an underflow; hence,
we must either redistribute or merge!

= Delete 24*

P,

2% 3* S*| 7*| 8* 14*| 16*

22% | 27* | 29* 33* | 34* | 38* | 39*

B+ Tree: Examples of Deletions

= Delete 24*

The sibling is “poor” (i.e., redistribution

is not applicable); hence, merge!

2*

3*

16*

22*%

27*

29*

34*

38*

39*

B+ Tree: Examples of Deletions

= Delete 24*

Root

17
¢ || 5 || 13 N
Se \ "z'
* * * * * ™~ i
2 3 5 7 8 ~ \;\4* 16* 22* 27*/ ,29* 33* 34* 38* 39*

Lacks a pointer for 30!

B+ Tree: Examples of Deletions

= Delete 24*

Root
17
¢ 5 13 K
Se \ "z'
* * * * * ~ et
2 3 5 7 8 \\;\4* 16* 22* 27*/ ,29* 33* 34* 38* 39*
N <oy
RON anf -
5 13 i 30

Lacks a key value to create a complete index entry!

B+ Tree: Examples of Deletions

= Delete 24*

(17

\
(/ 5 13 s‘ \‘\
S y N ‘,l \“

2% | 3* Bx| 7*| 8* . 14*| 16* \ e
Ny \ 22* 27*/ ,'29* 33* | 34* | 38* 309*
RON “Pull down” 17!
5 13 17 30

B+ Tree: Examples of Deletions

= Delete 24*

RON

N

x| 27+

29*

33*

34*

38*

39*

FINAL TREE!

B+ Tree: Examples of Deletions

= Delete 24*

24* was originally here

- —

-~
-~y
-~
-
-~
-~
~
~
~

N

—"
-

2*

3*

174

184

207

21%

22%

277

297

397

Assume (instead) the above tree during deleting 24*

Now we can re-distribute (instead of merging) keys!

= Delete 24*

B+ Tree: Examples of Deletions

13 201 22 30
i , i -
2% 3* S*| 7*| 8* 144 16* 17418 20% 21% 22% 271 29* 33% 34%38*|39*

[DONE! It suffices to re-distribute only 20; 17 was redistributed for illustration.

\

J

Next Class

Query Optimization
and Execution

Relational Operators

Transaction
Manager

Lock
Manager

¥ Files and Access Methods
Recovery

Manager

Queries : .
\ / Continue (Hash-Based Indexing)
A

