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Today...

Last Session:

= DBMS Internals- Part Il
= Buffer Management
= Files and Access Methods (file organizations)

Today’s Session:

= DBMS Internals- Part Il
= Tree-based indexes: ISAM and B+ trees

Announcements:
= PS2 grades are out

= The midterm exam is on Tuesday Feb 24 (all materials
are included)

= Next week is off (Spring break)- classes will resume on March 8
= P2is due on March 15

= PS3 will be out after the Spring break L igd,elagn ale=ia o s
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DBMS Layers

\ Queries /

Query Optimization
and Execution

Relational Operators

Transaction
Manager

Lock
Manager

——————————————————————————————

"k Files and Access Methods I
Recovery

Buffer Management Manager

| Disk Space Management




Outline

Why Indexing?

Storing Data Records and Index Types

> Indexed Static Access Method (ISAM) Trees

B+ Trees
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Motivation

= Consider a file of student records sorted by GPA

Page 1 Page 2 Page 3 Page N Data File

= How can we answer a range selection (E.g., “Find all
students with a GPA higher than 3.0”)?

* What about doing a binary search followed by a scan?
= Yes, but...

* What if the file becomes “very” large?
" Cost is proportional to the number of pages fetched
" Hence, may become very slow!



Motivation

= What about creating an index file (with one entry per
page) and do binary search there?

Index Entry = <first key on the page, pointer to the page>
A

Ki1|Pq| Ka|Po s - = KN |PN Index File

L

Page 1 Page 2 “ e Page N Data File

= But, what if the index file becomes also “very” large?



Motivation

= Repeat recursively!

Non-leaf
Pages v

- T A A A

S o o S o o S o o S © o

Leaf
Pages

Each tree page is a disk block and all data records reside (if chosen to be
part of the index) in ONLY leaf pages

How else data records can be stored?
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Why Indexing?

Storing Data Records and Index Types /

> Indexed Static Access Method (ISAM) Trees
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Where to Store Data Records?

" |In general, 3 alternatives for “data records” (each
referred to as K*) can be pursued:

= Alternative (1): K* is an actual data record with key k

= Alternative (2): K* is a <k, rid> pair, where rid is the
record id of a data record with search key k

= Alternative (3): K* is a <k, rid-list> pair, where rid-list
is a list of rids of data records with search key k



Where to Store Data Records?

" |In general, 3 alternatives for “data records” (each
referred to as K*) can be pursued:

( )

Alternative (1): Leaf pages contain the actual data (i.e., the data records)
& J

4 N
Alternative (2): Leaf pages contain the <key, rid> pairs and actual data

records are stored in a separate file

4 N
Alternative (3): Leaf pages contain the <key, rid-list> pairs and actual data

records are stored in a separate file
& J

The choice among these alternatives is orthogonal to the indexing technique




Clustered vs. Un-clustered Indexes

" |ndexes can be either clustered or un-clustered

® Clustered Indexes:

" When the ordering of data records is the same as
(or close to) the ordering of entries in some index

= Un-clustered Indexes:

" When the ordering of data records differs from the
ordering of entries in some index



Clustered vs. Un-clustered Indexes

= |s an index that uses Alternative (1) clustered or
un-clustered?
= Clustered

" |s an index that uses Alternative (2) or (3)

clustered or un-clustered?

= Clustered “only” if data records are sorted on the
search key field

" |n practice:
= A clustered index is an index that uses Alternative (1)
= |ndexes that use Alternatives (2) or (3) are un-clustered
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ISAM Trees

" |ndexed Sequential Access Method (ISAM) trees

are static
/_ Root ~—au
40
Non-Leaf
Pages
20 | | 33 51 | | 63
/ | |

Leaf 10* 15+ 20* 27% 33* 37* 40* ‘ 46* 51* 55* *
Pages

[ E.g., 2 Entries Per Page




ISAM Trees: Page Overflows

» What if there are a lot of insertions after creating
the tree?

Non-leaf i
Pages coe
— /& \ [ &\ [ &\ [\
Leaf .- oo .- .-
Pages ) ) %, A 7
Overflow ------= > N ’ .-
page

Primary pages



ISAM File Creation

= How to create an ISAM file?

= All leaf pages are allocated sequentially and
sorted on the search key value

" |f Alternative (2) or (3) is used, the data records
are created and sorted before allocating
leaf pages

" The non-leaf pages are subsequently allocated



ISAM: Searching for Entries

= Search begins at root, and key comparisons direct it
to a leaf

= Search for 27*

Root T=au

T

20 33 51 | | 63




ISAM: Inserting Entries

= The appropriate page is determined as for a search, and the
entry is inserted (with overflow pages added if necessary)

" |nsert 23*
Root =
|40 |
20 33 51 | 63
/.
10* 15* 20* 27* 33% 37* 40* | 46* 51* 55* 63* 97*

1

23*




ISAM: Inserting Entries

= The appropriate page is determined as for a search, and the
entry is inserted (with overflow pages added if necessary)

" |nsert48*
Root =
40 |_
/’ \\
20 | | 33 51 | | 63
10* | 15* 20% | 27* 33* | 37* 40* | 46* 51* | 55* 63* | 97*
Y
23 A8*




ISAM: Inserting Entries

= The appropriate page is determined as for a search, and the
entry is inserted (with overflow pages added if necessary)

" |nsert41*
Root =
40 J
/’ \\
20 33 51 63
10* 15* 20* 27* 33* 37* 40* | 46* 51* 55* 63* 97*
~
23* ag* | 41*




ISAM: Inserting Entries

= The appropriate page is determined as for a search, and the
entry is inserted (with overflow pages added if necessary)

=" |nsert42*
Root =
40 |
/’ \\
20 33 51 63
10* 15* 20* 27* 33* 37* 40* | 46* 51* 55* 63* 97*
Y
23* 48* | 41*

Y
Chains of overflow pages can easily develop! 40




ISAM: Deleting Entries

The appropriate page is determined as for a search, and the

entry is deleted (with ONLY overflow pages removed when

becoming empty)

Delete 42*

Root =

40

\\

P

20

33

/|

T~

51

63

10* | 15* 20*

27*

33*

37*

40* | 46+

51*

55*

63*

97*

RV

23*

48*

41*

42*




ISAM: Deleting Entries

The appropriate page is determined as for a search, and the

entry is deleted (with ONLY overflow pages removed when

becoming empty)

Delete 42*

Root =

40

\\

P

20

33

/|

T~

51

63

10* | 15* 20*

27*

33*

37*

40* | 46+

51*

55*

63*

97*

RV

23*

48*

41*




ISAM: Deleting Entries

The appropriate page is determined as for a search, and the

entry is deleted (with ONLY overflow pages removed when

becoming empty)

Delete 42*

Root =

40

\\

P

20

33

/|

T~

51

63

10* | 15* 20*

27*

33*

37*

40* | 46+

51*

55*

63*

97*

RV

23*

48 | 41*




ISAM: Deleting Entries

The appropriate page is determined as for a search, and the

entry is deleted (with ONLY overflow pages removed when

becoming empty)

Delete 51* Root

20 33

—au

40

\\

T~

51

63

10* | 15* 20* 27*

33*

37*

40* | 46*

51*

55*

63*

97*

48 | 41*

Note that 51 still appears in an index entry, but not in the leaf!




ISAM: Deleting Entries

The appropriate page is determined as for a search, and the

entry is deleted (with ONLY overflow pages removed when
becoming empty)

Delete 55*

Root =

40

\\

P

20

33

/|

T~

51

63

\

10* | 15* 20*

27*

33*

37*

40* | 46+

55*

63* 97*

N\

23*

48 | 41*

Primary pages are NOT removed, even if they become empty!



ISAM: Some Issues

Once an ISAM file is created, insertions and deletions affect only
the contents of leaf pages (i.e., ISAM is a static structure!)

Since index-level pages are never modified, there is no need to
lock them during insertions/deletions

= Critical for concurrency!

Long overflow chains can develop easily
® The tree can be initially set so that ~20% of each page is free

If the data distribution and size are relatively static, ISAM might
be a good choice to pursue!
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Dynamic Trees

= |SAM indices are static

= Long overflow chains can develop as the file grows, leading to
poor performance

= This calls for more flexible, dynamic indices that adjust
gracefully to insertions and deletions

* No need to allocate the leaf pages sequentially as in ISAM

= Among the most successful dynamic index schemes is
the B+ tree



B+ Tree Properties

= Fach node in a B+ tree of order d (this is a measure

of the capacity of a tree):
= Has at most 2d keys

" Has at least d keys (except the root, which may
have just 1 key)

= All leaves are on the same level
" Has exactly n-1 keys if the number of pointers is n

Points to a sub-tree
in which all keys are
greater than or equal k,

Points to a sub-tree

1
1 P1 Py
in which all keys are |+ H.H k ‘ ‘ ‘
1
less than k, :
]

—-——

3
=
e

h—
~~-~
L]
-

Points to a sub-tree in which all keys are greater
than or equal k, and less than to k,




B+ Tree: Searching for Entries

Search begins at root, and key comparisons direct it
to a leaf (as in ISAM)

Example 1: Search for entry 5*

Root \

* 16*

* | 39*




B+ Tree: Searching for Entries

Search begins at root, and key comparisons direct it
to a leaf (as in ISAM)

Example 2: Search for entry 15*

Root

AN

/

* | 39*

X

15* is not found!




B+ Trees: Inserting Entries

" Find correct leaf L

" Put data entryonto L
* |f L has enough space, done!
* Else, split L into L and a new node L,
" Re-partition entries evenly, copying up the middle key

* Parent node may overflow

= Push up middle key (splits “grow’ trees; a root split
increases the height of the tree)




B+ Tree: Examples of Insertions

" |nsert entry 8*

Root \

* | 39*

Leaf is full, hence, split!




B+ Tree: Examples of Insertions

" |nsert entry 8*

Root \

13

17

24

30

19*

20*

22*

24*

27*

29*

33*

34*

38*

39*

The middle key (i.e., 5) is “copied up”
and continues to appear in the leaf




B+ Tree: Examples of Insertions

" |nsert entry 8*

Root \

* 34*

38*

39*

5 || 13

17

24

30

> 2d keys and 2d + 1 pointers

Parent is full, hence, split!




B+ Tree: Examples of Insertions

" |nsert entry 8*

Root \

24 30
TN N
22% 24* | 27*| 29+ 33*| 34* [ 38* [ 39*
The middle key (i.e., 17)
is “pushed up”
17 ||=—
5 (| 13 24| 30

4 b/



B+ Tree: Examples of Insertions

17 ||
} A
" |nsert entry 8
2411 30
Root
£ N\
2 | 3* | 5% | 7* )14* 16* 19* 20*| 22* 24* | 27*| 29* 33* | 34*[ 38* | 39*
\N~ ’f
K O\
2* 3* 5* 7* 8*




B+ Tree: Examples of Insertions

" |nsert entry 8*

FINAL TREE! oo -

5 13 j 24 30
4 N a N
2% 3* 5 7*| 8* 14*| 16* 1979 20% 22* 24*| 27* 29* 33* 34* 38*| 39*

Splitting the root lead to an increase of height by 1!

é )

What about re-distributing entries instead of splitting nodes?

\ S




B+ Tree: Examples of Insertions

" |nsert entry 8*

* 34*

38*

39*

Leaf is full, hence, check the sibling




B+ Tree: Examples of Insertions

" |nsert entry 8*

Do it through the parent

Root \

24

N

2* 3* 5*

7*

14*

16*

19*

20*

22*

24*

27*

29*

33*

34*

38*

39*




" |nsert entry 8*

B+ Tree: Examples of Insertions

Do it through the parent

Root \

8

17

24

30

%/_\ v Ve

2*

3*

5*

7*

8*

14*

16*

19*

20*

22*

24*

27*

29*

33*

34*

38*

39*

“Copy up” the new low key value!

But, when to redistribute and when to split?




Splitting vs. Redistributing

= |Leaf Nodes

" Previous and next-neighbor pointers must be updated
upon insertions (if splitting is to be pursued)

" Hence, checking whether redistribution is possible does
not increase |/O

* Therefore, if a sibling can spare an entry, re-distribute

= Non-Leaf Nodes

" Checking whether redistribution is possible usually
increases |I/0O

= Splitting non-leaf nodes typically pays off!



B+ Insertions: Keep in Mind

Every data entry must appear in a leaf node;
hence, “copy up” the middle key upon splitting

When splitting index entries, simply “push up” the
middle key

Apply splitting and/or redistribution on leaf nodes

Apply only splitting on non-leaf nodes



B+ Trees: Deleting Entries

= Start at root, find leaf L where entry belongs

= Remove the entry
= |f L is at least half-full, done!
" If L underflows

" Try to re-distribute (i.e., borrow from a “rich
sibling” and “copy up” its lowest key)

" If re-distribution fails, merge L and a “poor
sibling”
= Update parent
" And possibly merge, recursively




B+ Tree: Examples of Deletions

= Delete 19*

Root
17 l‘>

5 13 j 24 30

SN e o SN e,

Removing 19* does not cause an underflow

* 3* 5* 7* 8* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* * *




B+ Tree: Examples of Deletions

= Delete 19*

Root
17

5 13 j 24 30

4 N / ~
1 14*)16*

* 3* S*| 7*| 8*

FINAL TREE!

20%| 22* 24*| 27%29* 33*| 34* 38*| 39*




B+ Tree: Examples of Deletions

= Delete 20*

/' - L\

5 || 13 j 24 || 30
4 N y N
/ — \ x& s S £ x&
2+ | 3 5+ [ 7+ ] 8¢ 14+ 16+ (20 22+ 24| 27+ 207 334 34+ 38+ 30+
P

~ -
—————————

Deleting 20* causes an underflow; hence, check a sibling for redistribution




B+ Tree: Examples of Deletions

= Delete 20*

Root

17
5 || 13 j 24 || 30
4 N 2 N
/ X \ x& A / i el ----/:’.N\s
2| 3 5| 77| 8 14*| 16* 20%| 22* ([ |24+| 27| 20~ B3+| 34+ 38%| 39*

S -
—————————

The sibling is ‘rich’ (i.e., can lend an entry); hence, remove 20* and redistribute!




= Delete 20*

B+ Tree: Examples of Deletions

/'

Root
17

1

/s

N

m

\ ‘\\\\\\\\\\\\\\\\“~ﬁ>

Is it done?

24

30

y

m

T

* 3*

5*

3
7*

8*

x&
14*| 16*

22*

24~

27*

29*

33*

34*

38*

39*

“Copy up” 27%, the lowest value in the leaf from which we borrowed 24*




= Delete 20*

B+ Tree: Examples of Deletions

/'

Root
17

1

/s

N

m

\ ‘\\\\\\\\\\\\\\\“‘1>

27

30

y

m

T

* 3*

5*

3
7*

8*

x&
14*| 16*

22*

24~

27*

29*

33*

34*

38*

39*

“Copy up” 27%, the lowest value in the leaf from which we borrowed 24*




B+ Tree: Examples of Deletions

= Delete 20*

Root
17

5 13 j 27 30

4 N / ~
1 14*)16*

* 3* S*| 7*| 8*

FINAL TREE!

22%|24* 27*|29* 33*| 34* 38*| 39*




B+ Tree: Examples of Deletions

= Delete 24*

/' - L\,

5 || 13 j 27 || 30
y N\ y \
/ S\ \ x& m_---#%\ x&
2% | 3* 5| 7% | 8* 14*| 16* (| |22%| 24 P27+ (29 33+ 34% 38*| 39"

-~ -
-

The affected leaf will contain only 1 entry and the sibling cannot lend
any entry (i.e., redistribution is not applicable); hence, merge!




B+ Tree: Examples of Deletions

= Delete 24*

“Toss” 27 because the page that it was
pointing to does not exist anymore!

17

P,

A
s
A
Ao
4 1
Il !
,l
\—s ------
- S
’ ~
( 27 30 )
\\; I’

2% | 3* 5| 7+| 8 14*| 16* C,']EE* 24> 27*(29* ot 33+ 34+{ 38%| 39*
\ -~ T I oSS
Merge A > -
22* | 27* | 29* 33* | 34* | 38* | 39*




B+ Tree: Examples of Deletions

= Delete 24* Is it done?

Root [T No, but almost there...

5 13j \T 30
4 N

SN e

22% | 27* | 29* 33* | 34* | 38* | 39*




B+ Tree: Examples of Deletions

This entails an underflow; hence,
we must either redistribute or merge!

= Delete 24*

P,

2% 3* S*| 7*| 8* 14*| 16*

22% | 27* | 29* 33* | 34* | 38* | 39*




B+ Tree: Examples of Deletions

= Delete 24*

The sibling is “poor” (i.e., redistribution

is not applicable); hence, merge!

2*

3*

16*

22*%

27*

29*

34*

38*

39*




B+ Tree: Examples of Deletions

= Delete 24*

Root

17
¢ || 5 || 13 N
Se \ "z'
* * * * * ™~ i
2 3 5 7 8 ~ \;\4* 16* 22* 27*/ ,29* 33* 34* 38* 39*

Lacks a pointer for 30!




B+ Tree: Examples of Deletions

= Delete 24*

Root
17
¢ 5 13 K
Se \ "z'
* * * * * ~ et
2 3 5 7 8 \\;\4* 16* 22* 27*/ ,29* 33* 34* 38* 39*
N <oy
RON anf -
5 13 i 30

Lacks a key value to create a complete index entry!




B+ Tree: Examples of Deletions

= Delete 24*

-----

( 17

\
(/ 5 13 s‘ \‘\
S y N ‘,l \“

2% | 3* Bx| 7*| 8* . 14*| 16* \ e
Ny \ 22* 27*/ ,'29* 33* | 34* | 38* 309*
RON “Pull down” 17!
5 13 17 30




B+ Tree: Examples of Deletions

= Delete 24*

RON

N

x| 27+

29*

33*

34*

38*

39*

FINAL TREE!




B+ Tree: Examples of Deletions

= Delete 24*

24* was originally here

_____________
- —
___________
-~
-~y
-~
-
-~
-~
~
~
~

N

—"
-

2*

3*

174

184

207

21%

22%

277

297

397

Assume (instead) the above tree during deleting 24*

Now we can re-distribute (instead of merging) keys!




= Delete 24*

B+ Tree: Examples of Deletions

13 201 22 30
i , i -
2% 3* S*| 7*| 8* 144 16* 17418 20% 21% 22% 271 29* 33% 34%38*|39*

[ DONE! It suffices to re-distribute only 20; 17 was redistributed for illustration.

\

J




Next Class

Query Optimization
and Execution

Relational Operators

Transaction
Manager

Lock
Manager

¥ Files and Access Methods
Recovery

Manager

Queries : .
\ / Continue (Hash-Based Indexing)
A



