
Database Applications (15-415)

DBMS Internals: Part II
Lecture 11, February 17, 2015

Mohammad Hammoud

Today…
 Last Session:

 DBMS Internals- Part I

 Today’s Session:

 DBMS Internals- Part II
 A Brief Summary on Disks and the RAID Technology

 File Organizations

 Announcements:

 Project 1 is due today by midnight

 The midterm exam is on Tuesday Feb 24 (all materials
are included)

DBMS Layers

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Disks: A “Very” Brief Summary

 DBMSs store data in disks

 Disks provide large, cheap and non-volatile storage

 I/O time dominates!

 The cost depends on the locations of pages on
disk (among others)

 It is important to arrange data sequentially to
minimize seek and rotational delays

Disks: A “Very” Brief Summary
 Disks can cause reliability and performance problems

 To mitigate such problems we can adopt “multiple disks”
and accordingly gain:
1. More capacity
2. Redundancy
3. Concurrency

 To achieve only redundancy we apply mirroring

 To achieve only concurrency we apply striping

 To achieve redundancy and concurrency we apply RAID levels
2, 3, 4 or 5

DBMS Layers

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Disk Space Management

 DBMSs disk space managers

 Support the concept of a page as a unit of data

 Page size is usually chosen to be equal to the block size so
that reading or writing a page can be done in 1 disk I/O

 Allocate/de-allocate pages as a contiguous sequence of
blocks on disks

 Abstracts hardware (and possibly OS) details from higher
DBMS levels

What to Keep Track of?

 The DBMS disk space manager keeps track of:

 Which disk blocks are in use

 Which pages are on which disk blocks

 Blocks can be initially allocated contiguously, but allocating and
de-allocating blocks usually create “holes”

 Hence, a mechanism to keep track of free blocks is needed

 A list of free blocks can be maintained (storage could be an issue)

 Alternatively, a bitmap with one bit per each disk block can
be maintained (more storage efficient and faster in identifying
contiguous free areas!)

OS File Systems vs.
DBMS Disk Space Managers

 Operating Systems already employ disk space managers
using their “file” abstraction
 “Read byte i of file f”  “read block m of track t of cylinder c of disk d”

 DBMSs disk space managers usually pursue their own disk
management without relying on OS file systems

 Enables portability

 Can address larger amounts of data

 Allows spanning and mirroring

DBMS Layers

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Buffer Management

 What is a DBMS buffer manager?

 It is the software responsible for fetching pages in and out
from/to disk to/from RAM as needed

 It hides the fact that not all data is in the RAM

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by a replacement policy

Satisfying Page Requests

 For each frame in the pool, the DBMS buffer
manager maintains

 The pin_count variable: # of users of a page

 The dirty variable: whether a page has been modified or not

 If a page is requested and not in the pool, the DBMS
buffer manager

– Chooses a frame for replacement and increments its
pin_count (a process known as pinning)

– If frame is dirty, writes it back to disk

– Reads the requested page into chosen frame

Satisfying Page Requests (Cont’d)

 A frame is not used to store a new page until its pin_count
becomes 0

 I.e., until all requestors of the old page have unpinned it (a
process known as unpinning)

 When many frames with pin_count = 0 are available, a
replacement policy is applied

 If no frame in the pool has pin_count = 0 and a page which
is not in the pool is requested, the buffer manager must
wait until some page is released!

Replacement Policies

 When a new page is to be placed in the pool, a resident page
should be evicted first

 Criterion for an optimum replacement [Belady, 1966]:

 The page that will be accessed the farthest in the future should be
the one that is evicted

 Unfortunately, optimum replacement is not implementable!

 Hence, most buffer managers implement a different criterion

 E.g., the page that was accessed the farthest back in the past is the
one that is evicted

 Or: MRU, Clock, FIFO, and Random, among others

Replacement Policies

 When a new page is to be placed in the pool, a resident page
should be evicted first

 Criterion for an optimum replacement [Belady, 1966]:

 The page that will be accessed the farthest in the future should be
the one that is evicted

 Unfortunately, optimum replacement is not implementable!

 Hence, most buffer managers implement a different criterion

 E.g., the page that was accessed the farthest back in the past is the
one that is evicted

 Or: MRU, Clock, FIFO, and Random, among others

This policy is known as the Least Recently Used (LRU) policy!

The LRU Replacement Policy

 Least Recently Used (LRU):
 For each page in the buffer pool, keep track of the time it

was unpinned

 Evict the page at the frame which has the oldest time

 But, what if a user requires sequential scans of data which
do not fit in the pool?

A B A C B A C B A C B A C

Access A:
Page Fault

Access B:
Page Fault

Access C:
Page Fault

Access A:
Page Fault

Access B:
Page Fault

Access C:
Page Fault

Access A:
Page Fault

. . .

Assume an access pattern of A, B, C, A, B, C, etc.

This phenomenon is known as “sequential flooding” (for this, MRU works
better!)

Virtual Memory vs.
DBMS Buffer Managers

 Operating Systems already employ a buffer management
technique known as virtual memory

0K-8k

8K-16k

16K-24k

32K-40k

44K-52k

52K-60k

60K-68k

68K-76k

0K-8k

8K-16k

16K-24k

Physical Address Space

Page # Offset

Virtual PagesVirtual Address

Physical PagesVirtual Address Space

Virtual Memory vs.
DBMS Buffer Managers

 Nonetheless, DBMSs pursue their own buffer
management so that they can:

 Predict page reference patterns more accurately
and applying effective strategies (e.g., page
prefetching for improving performance)

 Force pages to disks (needed for the WAL protocol)

 Typically, the OS cannot guarantee this!

DBMS Layers

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Records, Pages and Files

 Higher-levels of DBMSs deal with records (not pages!)

 At lower-levels, records are stored in pages

 But, a page might not fit all records of a database

 Hence, multiple pages might be needed

 A collection of pages is denoted as a file

A Page

A Record

…

A File

File Operations and Organizations

 A file is a collection of pages, each containing a
collection of records

 Files must support operations like:
 Insert/Delete/Modify records
 Read a particular record (specified using a record id)
 Scan all records (possibly with some conditions on the

records to be retrieved)

 There are several organizations of files:
 Heap
 Sorted
 Indexed

Heap Files

 Records in heap file pages do not follow any
particular order

 As a heap file grows and shrinks, disk pages are
allocated and de-allocated

 To support record level operations, we must:
 Keep track of the pages in a file

 Keep track of the records on a page

 Keep track of the fields on a record

Supporting Record Level Operations

Keeping Track of

Pages in a File Records in a Page Fields in a Record

Heap Files Using Lists of Pages

 A heap file can be organized as a doubly linked list of pages

 The Header Page (i.e., <heap_file_name, page_1_addr> is
stored in a known location on disk

 Each page contains 2 ‘pointers’ plus data

Header
Page

Data
Page

Data
Page

Data
Page

Free
Page

Free
Page

Free
Page

Pages with
Free Space

Full Pages

Heap Files Using Lists of Pages

 It is likely that every page has at least a few free bytes

 Thus, virtually all pages in a file will be on the free list!

 To insert a typical record, we must retrieve and examine
several pages on the free list before one with enough free
space is found

 This problem can be addressed using an alternative design
known as the directory-based heap file organization

Heap Files Using Directory of Pages

 A directory of pages can be maintained whereby each
directory entry identifies a page in the heap file

 Free space can be managed via maintaining:
 A bit per entry (indicating whether the corresponding page has any

free space)

 A count per entry (indicating the amount of free space on the page)

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORY

Supporting Record Level Operations

Keeping Track of

Pages in a File Records in a Page Fields in a Record

Page Formats

 A page in a file can be thought of as a collection of slots,
each of which contains a record

 A record can be identified using the pair <page_id, slot_#>,
which is typically referred to as record id (rid)

 Records can be either:

 Fixed-Length

 Variable-Length

Slot 1
Slot 2

Slot M
. . .

Fixed-Length Records

 When records are of fixed-length, slots become uniform and can
be arranged consecutively

 Records can be located by simple offset calculations

 Whenever a record is deleted, the last record on the page is
moved into the vacated slot
 This changes its rid <page_id, slot_#> (may not be acceptable!)

Slot 1
Slot 2

Slot N

. . .

N

Free
Space

Number
of Records

Fixed-Length Records

 Alternatively, we can handle deletions by using an
array of bits

 When a record is deleted, its bit is turned off, thus,
the rids of currently stored records remain the same!

. . .

M10. . .

M ... 3 2 1

Slot 1
Slot 2

Slot M

11
Number
of Slots (NOT Records)

Free
Space

Variable-Length Records

 If the records are of variable length, we cannot divide the
page into a fixed collection of slots

 When a new record is to be inserted, we have to find an
empty slot of “just” the right length

 Thus, when a record is deleted, we better ensure that all
the free space is contiguous

 The ability of moving records “without changing rids”
becomes crucial!

Pages with Directory of Slots

 A flexible organization for variable-length records is to
maintain a directory of slots with a <record_offset,
record_length> pair per a page

Page i
Rid = (i,N)

Rid = (i,2)

Rid = (i,1)

Pointer
to start
of free
space

SLOT DIRECTORY

N . . . 2 1

20 16 24 N

SlotsRecords can be moved
without changing rids!

Supporting Record Level Operations

Keeping Track of

Pages in a File Records in a Page Fields in a Record

Record Formats

 Fields in a record can be either of:

 Fixed-Length: each field has a fixed length and the
number of fields is also fixed

 Variable-Length: fields are of variable lengths but the
number of fields is fixed

 Information common to all records (e.g., number of
fields and field types) are stored in the system catalog

Fixed-Length Fields

 Fixed-length fields can be stored consecutively and
their addresses can be calculated using information
about the lengths of preceding fields

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

Variable-Length Fields

 There are two possible organizations to store variable-
length fields

1. Consecutive storage of fields separated by delimiters

4 $ $ $ $

Field
Count

Fields Delimited by Special Symbols

F1 F2 F3 F4

This entails a scan of records to locate a desired field!

Variable-Length Fields

 There are two possible organizations to store variable-
length fields

1. Consecutive storage of fields separated by delimiters

2. Storage of fields with an array of integer offsets

F1 F2 F3 F4

Array of Field Offsets

This offers direct access to a field in a record and stores NULL values efficiently!

Next Class

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Cont’d

