
Database Applications (15-415)

DBMS Internals- Part I
Lecture 09, February 12, 2014

Mohammad Hammoud

Today…
 Last Session:
 Quiz I & a Brief Introduction on Disks

 Today’s Session:
 DBMS Internals- Part I
 Disk Space Management
 Buffer Management

 Announcements:
 Quiz I grades are out
 Project 1 is due on Feb 18 by midnight

Outline

Where Do DBMSs Store Data?

Various Disk Organizations and Reliability
and Performance Implications on DBMSs

Disk Space Management

Buffer Management

DBMS Layers

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Today and the Next Two Weeks

The Memory Hierarchy

 Storage devices play an important role in database systems

 How systems arrange storage?

P

L1-I L1-D

P

L1-I L1-D

L2 Cache

L3 Cache

Main Memory

2-3 GHZ

16KB-64KB
2-4 Cycles

512KB-8MB
6-15 Cycles

4MB-32MB
30-50 Cycles

1GB-8GB
600+ Cycles

Disk

M
or

e
ex

pe
ns

iv
e,

 b
ut

 fa
st

er
! Less expensive, but slow

er!

160GB- 4TB
1000s of times slower

Where to Store Data?

 Where do DBMSs store information?
 DBMSs store large amount of data (e.g., Big Data!)

 Buying enough memory to store all data is

prohibitively expensive (let alone that memories
are volatile)

 Thus, databases are usually stored on disks (or

tapes for backups)

But, What Will Do With Memory?

 Data must be brought into memory to be processed!
 READ: transfer data from disk to main memory (RAM)

 WRITE: transfer data from RAM to disk

 I/O time dominates the time taken for database

operations!

 To minimize I/O time, it is necessary to store and locate
data strategically

I/O Time

Magnetic Disks
 Data is stored in disk blocks

 Blocks are arranged in concentric

rings called tracks

 Each track is divided into arcs called
sectors (whose size is fixed)

 The block size is a multiple of
sector size

 The set of all tracks with
the same diameter is called cylinder

 To read/write data, the arm
assembly is moved in or out to
position a head on a desired track

Platters

Spindle
Disk head

Arm movement

Arm assembly

Tracks

Sector

Accessing a Disk Block

 What is I/O time?
 The time to move the disk heads to the track on which a

desired block is located

 The waiting time for the desired block to rotate under the
disk head

 The time to actually read or write the data in the block once
the head is positioned

Accessing a Disk Block

 What is I/O time?
 The time to move the disk heads to the track on which a

desired block is located

 The waiting time for the desired block to rotate under the
disk head

 The time to actually read or write the data in the block once
the head is positioned

 I/O time = seek time + rotational time + transfer time

Seek Time

Rotational Time

Transfer Time

Implications on DBMSs

 Seek time and rotational delay dominate!

 Key to lower I/O cost: reduce seek/rotation delays!

 How to minimize seek and rotational delays?
 Blocks on same track, followed by
 Blocks on same cylinder, followed by
 Blocks on adjacent cylinder
 Hence, sequential arrangement of blocks in a file is a big win!

More on that later…

Outline

Where Do DBMSs Store Data?

Various Disk Organizations and Reliability
and Performance Implications on DBMSs

Disk Space Management

Buffer Management

Many Disks vs. One Disk
 Although disks provide cheap, non-volatile storage for

DBMSs, they are usually bottlenecks for DBMSs
 Reliability
 Performance

 How about adopting multiple disks?

1. More data can be held as opposed to one disk
2. Data can be stored redundantly; hence, if one disk fails,

data can be found on another
3. Data can be accessed concurrently

Many Disks vs. One Disk
 Although disks provide cheap, non-volatile storage for

DBMSs, they are usually bottlenecks for DBMSs
 Reliability
 Performance

 How about adopting multiple disks?

1. More data can be held as opposed to one disk
2. Data can be stored redundantly; hence, if one disk fails,

data can be found on another
3. Data can be accessed concurrently

Capacity!

Reliability!

Performance!

Multiple Disks

Discussions on:

Reliability Performance Reliability + Performance

Logical Volume Managers (LVMs)
 But, disk addresses used within a file system are assumed

to refer to one particular disk (or sub-disk)

 What about providing an abstraction that makes a
number of disks appear as one disk?

Disk Disk

LVM

Disk

Logical Volume Managers (LVMs)

 What can LVMs do?
 Spanning:

 LVM transparently maps a larger address space to different disks
 Mirroring:

 Each disk can hold a separate, identical copy of data
 LVM directs writes to the same block address on each disk
 LVM directs a read to any disk (e.g., to the less busy one)

Disk Disk

LVM

Disk

Logical Volume Managers (LVMs)

 What can LVMs do?
 Spanning:

 LVM transparently maps a larger address space to different disks
 Mirroring:

 Each disk can hold a separate, identical copy of data
 LVM directs writes to the same block address on each disk
 LVM directs a read to any disk (e.g., to the less busy one)

Disk Disk

LVM

Mainly Provides Redundancy!

Multiple Disks

Discussions on:

Reliability Performance Reliability + Performance

Data Striping
 To achieve parallel accesses, we can use a technique

called data striping

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Logical File

Stripe Length = # of disks

Striping Unit

Disk 1 Disk 2 Disk 3 Disk 4

0 1 2 3 4 5 6 10 14 7 11 15 9 13 8 12

Data Striping
 To achieve parallel accesses, we can use a technique

called data striping

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Disk 1 Disk 2 Disk 3 Disk 4

0 1 2 3 4 5 6 10 14 7 11 15 9 13 8 12

Client I: 512K write, offset 0 Client II: 512K write, offset 512

0 4 1 5 2 6 3 7 8 12 9 13 10 14 11 15

Data Striping

Disk 1 Disk 2 Disk 3 Disk 4
Stripe 1 Unit 1 Unit 2 Unit 3 Unit 4
Stripe 2 Unit 5 Unit 6 Unit 7 Unit 8
Stripe 3 Unit 9 Unit 10 Unit 11 Unit 12
Stripe 4 Unit 13 Unit 14 Unit 15 Unit 16
Stripe 5 Unit 17 Unit 18 Unit 19 Unit 20

Each stripe is written across all disks at once

Typically, a unit is either:
- A bit Bit Interleaving
- A byte Byte Interleaving
- A block Block Interleaving

Striping Unit Values: Tradeoffs
 Small striping unit values
 Higher parallelism (+)
 Smaller amount of data to transfer (+)
 Increased seek and rotational delays (-)

Disk 2 Disk 3 Disk 4 Disk 1

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

Striping Unit Values: Tradeoffs
 Large striping unit values
 Lower parallelism (-)
 Larger amount of data to transfer (-)
 Decreased seek and rotational delays (+)
 A request can be handled completely on a separate disk! (- or +)
 But, multiple requests could be satisfied at once! (+)

Disk 2 Disk 3 Disk 4 Disk 1

1

2

3

4

Striping Unit Values: Tradeoffs
 Large striping unit values
 Lower parallelism
 Larger amount of data to transfer
 Decreased seek and rotational delays
 A request can be handled completely on a separate disk!
 But, multiple requests could be satisfied at once!

Disk 2 Disk 3 Disk 4 Disk 1

1

2

3

4

Number of requests = Concurrency Factor

Multiple Disks

Discussions on:

Reliability Performance Reliability + Performance

Redundant Arrays of Independent Disks

 A system depending on N disks is much more likely to
fail than one depending on one disk
 If the probability of one disk to fail is f
 Then, the probability of N disks to fail is (1-(1-f)N)

 How would we combine reliability with performance?
 Redundant Arrays of Inexpensive Disks (RAID)

combines mirroring and striping

Nowadays, Independent!

Striping

Data
RAID Level 0

Mirroring

Data
RAID Level 1

RAID Level 2

Data bits

Check bits

Bit Interleaving;
ECC

Data

RAID Level 3

Data bits

Parity bits

Bit Interleaving;
Parity

Data

RAID Level 4

Data blocks

Parity blocks

Block Interleaving;
Parity

Data

RAID Level 5

Data and
parity
blocks

Block Interleaving;
Parity

Data

RAID 4 vs. RAID 5
 What if we have a lot of small writes?
 RAID 5 is the best

 What if we have mostly large writes?
 Multiples of stripes
 Either is fine

 What if we want to expand the number of disks?
 RAID 4: add a disk and re-compute parity
 RAID 5: add a disk, re-compute parity, and shuffle data

blocks among all disks to reestablish the check-block
pattern (expensive!)

Beyond RAID 5

 RAID 6
 Like RAID 5, but additional parity
 Handles two failures

 Cascaded RAID
 RAID 1+0 (RAID 10)
 Striping across mirrored drives

 RAID 0+1
 Two striped sets, mirroring each other

Beyond Disks: Flash

 Flash memory is a relatively new technology providing
the functionality needed to hold file systems and DBMSs
 It is writable
 It is readable
 Writing is slower than reading
 It is non-volatile
 Faster than disks, but slower than DRAMs
 Unlike disks, it provides random access
 Limited lifetime
 More expensive than disks

Outline

Where Do DBMSs Store Data?

Various Disk Organizations and Reliability
and Performance Implications on DBMSs

Disk Space Management

Buffer Management

DBMS Layers

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Disk Space Management

 DBMSs disk space managers:
 Support the concept of a page as a unit of data
 Page size is usually chosen to be equal to the block size

 Allocate/de-allocate pages as a contiguous sequence of

blocks on disks

 Abstracts hardware (and possibly OS) details from

higher DBMS levels

Data and Metadata Maintenance

 The DBMS disk space manager keeps track of:
 Which disk blocks are in use
 Which pages are on which disk blocks

 Blocks can be initially allocated contiguously, but allocating and
de-allocating blocks usually create “holes”

 Hence, a mechanism to keep track of free blocks is needed
 A list of free blocks can be maintained (storage could be an issue)
 Alternatively, a bitmap with one bit per each disk block can

be maintained (more storage efficient and faster in identifying
contiguous free areas!)

OS File Systems vs.
DBMS Disk Space Managers

 Operating Systems already employ disk space
managers using their “file” abstraction
 “Read byte i of file f” “read block m of track t of

cylinder c of disk d”

 DBMSs disk space managers usually pursue their own
disk management without relying on OS file systems
 Enables portability
 Can address larger amounts of data
 Allows spanning and mirroring

DBMS Layers

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Buffer Management

 What is a DBMS buffer manager?
 It is the software responsible for bringing pages from disk(s) to

RAM as needed
 It hides the fact that not all data are in the RAM

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by a replacement policy

Satisfying Page Requests

 For each frame in the pool, the DBMS buffer manager
maintains two variables:
 pin_count: # of users of a page
 dirty: whether a page has been modified or not

 Upon a page fault, the DBMS buffer manager
 Chooses a frame for replacement and increments its

pin_count (a process known as pinning)
 If the frame is dirty, writes it back to disk
 Reads the requested page into the chosen frame

Satisfying Page Requests (Cont’d)

 A frame is not used to store a new page until its pin_count
becomes 0
 I.e., until all requestors of the old page have unpinned it (a

process known as unpinning)

 When many frames with pin_count = 0 are available, a
replacement mechanism is triggered

 If no frame in the pool has pin_count = 0 and a page fault
occurs, the buffer manager must wait until some page
is released!

Replacement Policies
 When a new page is to be placed in the pool, a resident page

should be evicted first

 Criterion for an optimum replacement [Belady, 1966]:
 The page that will be accessed the farthest in the future should be

the one that is evicted

 Unfortunately, optimum replacement is not implementable!

 Hence, most buffer managers implement a different criterion
 E.g., the page that was accessed the farthest back in the past is the

one that is evicted

Replacement Policies
 When a new page is to be placed in the pool, a resident page

should be evicted first

 Criterion for an optimum replacement [Belady, 1966]:
 The page that will be accessed the farthest in the future should be

the one that is evicted

 Unfortunately, optimum replacement is not implementable!

 Hence, most buffer managers implement a different criterion
 E.g., the page that was accessed the farthest back in the past is the

one that is evicted
 Or: MRU, Clock, FIFO, and Random, among others

This policy is known as the Least Recently Used (LRU) policy!

The LRU Replacement Policy
 Least Recently Used (LRU):
 For each page in the buffer pool, keep track of the last time it

was unpinned
 Evict the page at the frame which has the oldest time

 But, what if a user requires iterative sequential scans of data

which do not fit in the pool?

A B A C B A C B A C B A C

Access A:
Page Fault

Access B:
Page Fault

Access C:
Page Fault

Access A:
Page Fault

Access B:
Page Fault

Access C:
Page Fault

Access A:
Page Fault

. . .

Assume an access pattern of A, B, C, A, B, C, etc.

This phenomenon is known as “sequential flooding” (for this, MRU works better!)

Virtual Memory vs.
DBMS Buffer Managers

 Operating Systems already employ a buffer management
technique known as virtual memory

0K-8k

8K-16k

16K-24k

32K-40k

44K-52k

52K-60k

60K-68k

68K-76k

0K-8k

8K-16k

16K-24k

Physical Address Space

Page # Offset

Virtual Pages Virtual Address

Physical Pages Virtual Address Space

Virtual Memory vs.
DBMS Buffer Managers

 Nonetheless, DBMSs pursue their own buffer
management so that they can:
 Predict page reference patterns more accurately

and applying effective strategies (e.g., page
prefetching for improving performance)

 Force pages to disks (needed for the WAL protocol)
 The OS cannot guarantee this

Concluding Remarks
 DBMSs store data in disks
 Disks provide large, cheap and non-volatile storage

 I/O time dominates!

 The cost depends on the locations of pages on

disk (among others)

 It is important to arrange data sequentially to
minimize seek and rotation delays

Concluding Remarks
 The lowest layer of the DBMS software which

deals with management of space on disk is called
disk space manager
 Higher layers allocate, de-allocate, read and write

pages through (routines provided by) this layer

 However, data must be in memory for DBMSs to
operate on

 The buffer manager sits on top of the disk space

manager and brings pages in from disks to RAM as
needed in response to read/write requests

Next Class

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

	Database Applications (15-415)��DBMS Internals- Part I�Lecture 09, February 12, 2014
	Today…
	Outline
	DBMS Layers
	The Memory Hierarchy
	Where to Store Data?
	But, What Will Do With Memory?
	Magnetic Disks
	Accessing a Disk Block
	Accessing a Disk Block
	Implications on DBMSs
	Outline
	Many Disks vs. One Disk
	Many Disks vs. One Disk
	Multiple Disks
	Logical Volume Managers (LVMs)
	Logical Volume Managers (LVMs)
	Logical Volume Managers (LVMs)
	Multiple Disks
	Data Striping
	Data Striping
	Data Striping
	Striping Unit Values: Tradeoffs
	Striping Unit Values: Tradeoffs
	Striping Unit Values: Tradeoffs
	Multiple Disks
	Redundant Arrays of Independent Disks
	RAID Level 0
	RAID Level 1
	RAID Level 2
	RAID Level 3
	RAID Level 4
	RAID Level 5
	RAID 4 vs. RAID 5
	Beyond RAID 5
	Beyond Disks: Flash
	Outline
	DBMS Layers
	Disk Space Management
	Data and Metadata Maintenance
	OS File Systems vs. �DBMS Disk Space Managers
	DBMS Layers
	Buffer Management
	Satisfying Page Requests
	Satisfying Page Requests (Cont’d)
	Replacement Policies
	Replacement Policies
	The LRU Replacement Policy
	Virtual Memory vs. �DBMS Buffer Managers
	Virtual Memory vs. �DBMS Buffer Managers
	Concluding Remarks
	Concluding Remarks
	Next Class

