
Database Applications (15-415)

SQL-Part III &
Storing Data: Disks and Files- Part I

Lecture 8, February 5, 2014

Mohammad Hammoud

Today…
 Last Session:

 Standard Query Language (SQL)- Part II

 Today’s Session:

 Standard Query Language (SQL)- Part III

 Storing Data: Disks and Files- Part I

 Announcements:

 Project 1 is now posted. Due on Feb 18 by midnight

 Quiz I is on Monday 10, 2014 (all topics included except
today’s data storage topic)

 PS2 is due on Feb 07 by midnight

Outline

NULL values and Join Variants

Complex Integrity Constraints and Triggers

Java Database Connectivity

Storing Data: Disks and Files (Briefly)



NULL Values

 Column values can be unknown (e.g., a sailor may not yet
have a rating assigned)

 Column values may be inapplicable (e.g., a maiden-name
column for men!)

 NULL values can be used in such situations

 However, NULL values complicate many issues!

 Comparing NULL to a valid value returns unknown

 Comparing NULL to a NULL returns unknown

NULL Values

 Considering a row with rating = NULL and age = 20; How
does it compare with the following Boolean expressions?
 Rating = 8 OR age < 40

 Rating = 8 AND age < 40

 In general, what about?

 NOT unknown

 True OR unknown

 False OR unknown

 False AND unknown

 True AND unknown

 TRUE

 unknown

 unknown

 True
 unknown
 False
 unknown

NULL Values

 Considering a row with rating = NULL and age = 20; How
does it compare with the following Boolean expressions?
 Rating = 8 OR age < 40

 Rating = 8 AND age < 40

 In general, what about?

 NOT unknown

 True OR unknown

 False OR unknown

 False AND unknown

 True AND unknown

 TRUE

 unknown

 unknown

 True
 unknown
 False
 unknown

Three-Valued Logic!

Inner Joins

 Tuples of a relation that do not match some row in
another relation (according to a join condition c) do not
appear in the result

 Such a join is referred to as “Inner Join” (so far, all inner joins)

select ssn, c-name
from takes, class
where takes.c-id = class.c-id

select ssn, c-name
from takes join class on takes.c-id = class.c-id

Equivalently:

An Example of Inner Joins

CLASS

c-id c-name units

15-413 s.e. 2

15-412 o.s. 2

TAKES

SSN c-id grade

123 15-413 A

234 15-413 B

SSN c-name

123 s.e

234 s.e o.s.: gone!

 Find all SSN(s) taking course s.e.

Outer Joins

 Tuples of a relation that do not match some row in
another relation (according to a join condition c) can still
appear exactly once in the result

 Such a join is referred to as “Outer Join”

 Result columns will be assigned NULL values

select ssn, c-name
from takes outer join class
on takes.c-id=class.c-id

CLASS

c-id c-name units

15-413 s.e. 2

15-412 o.s. 2

TAKES

SSN c-id grade

123 15-413 A

234 15-413 B

SSN c-name

123 s.e

234 s.e.

null o.s.

An Example of Outer Joins

 Find all SSN(s) taking course s.e.

Joins

 The general SQL syntax:

select [column list]
from table_name
 [inner | {left | right | full} outer] join
 table_name
 on qualification_list

Outer Join Type Description

Left Outer Join A rows without a matching B
row appear in the result

Right Outer Join B rows without a matching A
row appear in the result

Full Outer Join Both A and B rows without a
match appear in the result

Outline

NULL values and Join Variants

Complex Integrity Constraints and Triggers

Java Database Connectivity

Storing Data: Disks and Files (Briefly)



Integrity Constraints- A Review

 An Integrity Constraint (IC) describes conditions that
every legal instance of a relation must satisfy

 Inserts/deletes/updates that violate IC’s are disallowed

 ICs can be used to:

 Ensure application semantics (e.g., sid is a key)

 Prevent inconsistencies (e.g., sname has to be a
string, age must be < 20)

Types of Integrity Constraints- A Review

 IC types:
 Domain constraints

 Primary key constraints

 Foreign key constraints

 General constraints
 Useful when more general ICs than keys are involved

 Can be specified over a single table and across tables

General Constraints Over a Single Table

 Complex constraints over a single table can be defined using
CHECK conditional-expression

CREATE TABLE Sailors (sid INTEGER,
 sname CHAR (10),
 rating INTEGER,
 age REAL,
 PRIMARY KEY (sid),
 CHECK (rating >= 1 AND rating <= 10))

A primary key constraint A general constraint

A domain constraint

 How can we enforce that “Interlake” boats cannot be reserved?

CREATE TABLE Reserves (sid INTEGER,
 bid INTEGER,
 day DATE,
 FOREIGN KEY (sid) REFERENCES Sailors,
 FOREIGN KEY (bid) REFERENCES Boats,
 CONSTRAINT noInterlakeRes,
 CHECK (‘Interlake’ NOT IN
 (SELECT B.bname
 FROM Boats B
 WHERE B.bid = Reserves.bid)))

A foreign key constraint

General Constraints Over a Single Table

General Constraints Across Tables-
Motivation

 How can we enforce that the number of boats plus
the number of sailors should not exceed 100?

 CREATE TABLE Sailors (sid INTEGER,
 sname CHAR (10),
 rating INTEGER,
 age REAL,
 PRIMARY KEY (sid),
 CHECK (rating >= 1 AND rating <= 10)
 CHECK (((SELECT COUNT (S.sid)
 FROM Sailors S) +
 (SELECT COUNT (B.bid)
 FROM Boats B)) < 100))

What if the Sailors table is empty and we insert more than 100 rows into Boats?

General Constraints Across Tables-
Assertions

 How can we enforce that the number of boats plus
the number of sailors should not exceed 100?

CREATE ASSERTION smallClub
CHECK
((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM Boats B) < 100)

ASSERTION is the right solution; not associated with either table!

New Domains

 Users can define new domains using the
CREATE DOMAIN statement

CREATE DOMAIN ratingval1 INTEGER DEFAULT 1
 CHECK (VALUE >= 1 AND VALUE <= 10)

CREATE DOMAIN ratingval2 INTEGER DEFAULT 1
 CHECK (VALUE >= 1 AND VALUE <= 20)

ratingval1 and ratingval2 CAN be compared!

Source type

Optional!

Domain constraints will be always enforced (also for new domains)!

Distinct Types

 Users can define new distinct types using the
CREATE TYPE statement

CREATE TYPE ratingtype1 AS INTEGER

ratingtype1 and ratingtype2 CANNOT be compared!

CREATE TYPE ratingtype2 AS INTEGER

Domain constraints will be always enforced (also for new types)!

Triggers

 A trigger is a procedural code that is automatically
executed in response to certain events on a
particular table or view in a database

 Triggers can be activated either before or after

 Insertions

 Deletions

 Updates

A Trigger Example

 Set a timestamp field whenever a row in the takes
table is updated

 First: we need to add our timestamp field

TAKES

SSN c-id grade

123 15-413 A

234 15-413 B

ALTER TABLE takes
ADD COLUMN updated TIMESTAMP

A Trigger Example

 Set a timestamp field whenever a row in the takes
table is updated

 Second: we need to create a function that sets the
“updated” column with the current timestamp

TAKES

SSN c-id grade

123 15-413 A

234 15-413 B

CREATE FUNCTION update_col()
 BEGIN
 NEW.updated = NOW();
 RETURN NEW;
 END;

A Trigger Example

 Set a timestamp field whenever a row in the takes
table is updated

 Third: we need to Invoke update_col() when a row in the
takes table is updated

TAKES

SSN c-id grade

123 15-413 A

234 15-413 B

CREATE TRIGGER update_takes_modtime
 AFTER UPDATE ON takes
 FOR EACH ROW
 EXECUTE PROCEDURE update_col();

A row-level trigger;
otherwise, it will be a
statement-level trigger

Outline

NULL values and Join Variants

Complex Integrity Constraints and Triggers

Java Database Connectivity

Storing Data: Disks and Files (Briefly)



Java Database Connectivity

 SQL commands can be embedded in host language programs

 A popular data access technology which provides an API for
querying and manipulating data in (any) storage system is
called Java Database Connectivity (JDBC)

 Direct interactions with a DBMS occurs through a DBMS-
specific driver

 A driver is a software program that translates JDBC calls into
DBMS-specific calls
 Drivers do not necessarily interact with a DBMS that understands SQL

 Thus, a DBMS in JDBC’s parlance is usually referred to as data source

Establishing a Connection

 With JDBC, a database is represented by a URL

 With PostgreSQL™, this takes one of the following forms:
 jdbc:postgresql:database

 jdbc:postgresql://host/database

 jdbc:postgresql://host:port/database

 To connect to a database, a Connection instance from JDBC
can be used

Connection db = DriverManager.getConnection(url, username, password);

Establishing a Connection

 A number of additional properties can be used to specify
additional driver behavior specific to PostgreSQL™

String url = "jdbc:postgresql://localhost/test";
Properties props = new Properties();
props.setProperty("user",“Hammoud");
props.setProperty("password","secret");
props.setProperty("ssl","true");
Connection conn = DriverManager.getConnection(url, props);

Equivalently:

String url = "jdbc:postgresql://localhost/test?user=Hammoud&password=secret&ssl=true";
Connection conn = DriverManager.getConnection(url);

Establishing a Connection

public Connection getConnection() throws SQLException {

 String url = "jdbc:postgresql://localhost/test";
 Properties props = new Properties();
 props.setProperty("user",“Hammoud");
 props.setProperty("password","secret");
 props.setProperty("ssl","true");
 Connection conn = DriverManager.getConnection(url, props);

 System.out.println("Connected to database");
 return conn;
}

 Putting it all together, you can create the following function:

Creating Tables

 Assume the following students table:

 Sid Name

1 Hammoud

2 Esam

CREATE TABLE students(sid INTEGER, name CHAR(30), PRIMARY KEY (sid)) SQL:

public void createTable() throws SQLException {
 String createT = "create table students (sid INTEGER, " +
 “name CHAR(30) “ +
 "PRIMARY KEY (sid))";
 Statement stmt = null;
 try { stmt = conn.createStatement();
 stmt.executeUpdate(createT);
 } catch (SQLException e) { e.printStackTrace(e); }
 finally { if (stmt != null) { stmt.close(); } }
}

JDBC:

Populating Tables

 Assume the following students table:

 Sid Name

1 Hammoud

2 Esam

INSERT INTO students values (1, ‘Hammoud)
INSERT INTO students values (2, ‘Esam’)

SQL:

public void populateTable() throws SQLException {
 Statement stmt = null;
 try {
 stmt = conn.createStatement();
 stmt.executeUpdate("insert into students values(1, ‘Hammoud‘)”);
 stmt.executeUpdate("insert into students values(2, ‘Esam‘)”);
 } catch (SQLException e) {}
 finally { if (stmt != null) { stmt.close(); } }
}

JDBC:

Querying Tables

 Assume the following students table:

 Sid Name

1 Hammoud

2 Esam

SELECT sid, name from students SQL:

public static void viewTable() throws SQLException {
 Statement stmt = null;
 String query = "select sid, name from students";
 try {
 stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(query);
 while (rs.next()) {
 int sID = rs.getInt(“sid");
 String sName = rs.getString(“name");
 System.out.println(sName + "\t" + sID); }
 } catch (SQLException e) {} finally { if (stmt != null) { stmt.close(); } }
}

JDBC:

Columns retrieved by names

A “cursor” the points
to one row of data
at a time

Querying Tables

 Assume the following students table:

 Sid Name

1 Hammoud

2 Esam

public static void viewTable() throws SQLException {
 Statement stmt = null;
 String query = "select sid, name from students";
 try {
 stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(query);
 while (rs.next()) {
 int sID = rs.getInt(1);
 String sName = rs.getString(2);
 System.out.println(sName + "\t" + sID); }
 } catch (SQLException e) {} finally { if (stmt != null) { stmt.close(); } }
}

SELECT sid, name from students SQL:

OR: Columns retrieved by numbers

JDBC:

Cursor Methods

 Methods available to move the cursor of a result set:

 next()

 previous()

 first()

 Last()

 beforeFirst()

 afterLast()

 relative(int rows)

 absolute(int row)

By default, you can
call only next()!

More on this
shortly…

Updating Tables

 By default, ResultSet objects cannot be updated, and their cursors can
only be moved forward

 ResultSet objects can be though defined to be scrollable (the cursor
can move backwards or move to an absolute position) and updatable

public void modifyStudents() throws SQLException {
 Statement stmt = null;
 try {
 /* stmt = con.createStatement(); */
 stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
 ResultSet uprs = stmt.executeQuery("SELECT * FROM students");
 while (uprs.next()) {
 String old_n = uprs.getString(“name");
 uprs.updateString(“name", “Mohammad” + old_n);
 uprs.updateRow(); }
 } catch (SQLException e) {} finally { if (stmt != null) { stmt.close(); } }
}

Result Set Types

 TYPE_FORWARD_ONLY (the default)

 The result set is not scrollable

 TYPE_SCROLL_INSENSITIVE

 The result set is scrollable

 The result set is insensitive to changes made to the underlying
data source while it is open

 TYPE_SCROLL_SENSITIVE

 The result set is scrollable

 The result set is sensitive to changes made to the underlying data
source while it is open

Result Set Concurrency

 The concurrency of a ResultSet object determines
what level of update functionality is supported

 Concurrency levels:

 CONCUR_READ_ONLY (the default)

 The result set cannot be updated

 CONCUR_UPDATABLE

 The result set can be updated

Prepared Statements

 JDBC allows using a PreparedStatement object for sending SQL
statements to a database

 This way, the same statement can be used with different
values many times

…
String sql = “INSERT into students values (?, ?)”;
PreparedStatement ps = conn.prepareStatement(sql);
ps.clearParameters();
ps.setInt(1, 111);
ps.setString(2, “Hammoud”);
int numRows1 = ps.executeUpdate();

ps.setInt(1, 222);
ps.setString(2, “Esam”);
int numRows2 = ps.executeUpdate();
…

More about
JDBC in the
recitations! 1

2

Outline

NULL values and Join Variants

Complex Integrity Constraints and Triggers

Java Database Connectivity

Storing Data: Disks and Files (Briefly) 

DBMS Layers

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Today and Next Lectures

The Memory Hierarchy

 Storage devices play an important role in database systems

 How systems arrange storage?

P

L1-I L1-D

P

L1-I L1-D

L2 Cache

L3 Cache

Main Memory

2-3 GHZ

16KB-64KB
2-4 Cycles

512KB-8MB
6-15 Cycles

4MB-32MB
30-50 Cycles

1GB-8GB
600+ Cycles

Disk

M
o

re
 e

xp
e

n
si

ve
, b

u
t

fa
st

er
!

Less exp
e

n
sive, b

u
t slo

w
er!

160GB- 4TB
1000s of times slower

Where to Store Data?

 Where does DBMS store information?

 DBMSs store large amount of data (e.g., Big Data!)

 Buying enough memory to store all data is
prohibitively expensive (let alone that memories
are volatile)

 Thus, databases are usually stored on disks (or
tapes for backups)

But, What Will Do With Memory?

 Data must be brought to memory to be processed!

 READ: transfer data from disk to main memory (RAM)

 WRITE: transfer data from RAM to disk

 I/O time dominates the time taken for database
operations!

 To minimize I/O time, it is necessary to store and locate
data strategically

I/O Time

Magnetic Disks
 Data is stored in disk blocks

 Blocks are arranged in

concentric rings called tracks

 The arm assembly is moved in
or out to position a head on a
desired track

 Each track is divided into arcs
called sectors (whose size
is fixed)

 The block size is a multiple of
sector size

 The set of all tracks with
the same diameter is
called cylinder

Platters

Spindle

Disk head

Arm movement

Arm assembly

Tracks

Sector

Accessing a Disk Block

 What is I/O time?

 The time to move the disk heads to the track on which a
desired block is located

 The waiting time for the desired block to rotate under the
disk head

 The time to actually read or write the data in the block once
the head is positioned

Accessing a Disk Block

 What is I/O time?

 The time to move the disk heads to the track on which a
desired block is located

 The waiting time for the desired block to rotate under the
disk head

 The time to actually read or write the data in the block once
the head is positioned

 I/O time = seek time + rotational time + transfer time

Seek Time

Rotational Time

Transfer Time

Implications on DBMSs

 Seek time and rotational delay dominate!

 Key to lower I/O cost: reduce seek/rotation delays!

 How to minimize seek and rotational delays?

 Blocks on same track, followed by

 Blocks on same cylinder, followed by

 Blocks on adjacent cylinder

 Hence, sequential arrangement of blocks in a file is a big win!

Who can take care of that?

Storing Data: Concluding Remarks

 Disks provide cheap, non-volatile storage for DBMSs

 However, data must be in memory for the DBMS to
operate on it

 I/O time dominates!

 The cost depends on the locations of pages on disk

 It is important to arrange data sequentially to
minimize seek and rotation delays

Next Class

Quiz I &

Storing Data: Disks and Files
(Cont’d)

