
Database Applications (15-415)

SQL-Part II
Lecture7, February 3, 2014

Mohammad Hammoud

Today…
 Last Session:

 Standard Query Language (SQL)- Part I

 Today’s Session:

 Standard Query Language (SQL)- Part II

 Announcements:

 PS2 is due on Feb 07, 2014 by midnight

 Quiz I is on Monday 10, 2014 (all topics included
except next lecture’s material on storing data)

 Project I will be posted by tomorrow. It is due on Feb
18 by midnight

Outline

Nested Queries

Insertions, Deletions and
Updates

NULL values and Join Variants



A Join Query

 Find the names of sailors who have reserved boat 101

 Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

Reserves

Sid Bid Day

22 101 10/10/2013

22 102 10/10/2013

select S.sname
from Sailors S, Reserves R
where S.sid = R.sid
 and R.bid = 101

Nested Queries

 Find the names of sailors who have reserved boat 101

 Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

Reserves

Sid Bid Day

22 101 10/10/2013

22 102 10/10/2013

SELECT S.sname

FROM Sailors S

WHERE S.sid IN (SELECT R.sid

 FROM Reserves R

 WHERE R.bid=101)

OR…

IN compares a value with a set of values

Nested Queries

 Find the names of sailors who have not reserved boat 101

 Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

Reserves

Sid Bid Day

22 101 10/10/2013

22 102 10/10/2013

SELECT S.sname

FROM Sailors S

WHERE S.sid NOT IN (SELECT R.sid

 FROM Reserves R

 WHERE R.bid=101)

Deeply Nested Queries

 Find the names of sailors who have reserved a red boat

 Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

Reserves

Sid Bid Day

22 101 10/10/2013

22 102 10/10/2013

SELECT S.sname

FROM Sailors S

WHERE S.sid IN (SELECT R.sid

 FROM Reserves R

 WHERE R.bid IN (SELECT B.bid
 FROM Boats B
 WHERE B.color = ‘red’))

Boats

Bid Bname Color

101 Interlake Red

102 Clipper Green

In principle, queries with very deeply nested structures are possible!

sid sname rating age

22 dustin 7 45.0

29 brutus 1 33.0

31 lubber 8 55.5

32 andy 8 25.5

58 rusty 10 35.0

64 horatio 7 35.0

71 zorba 10 16.0

74 horatio 9 35.0

85 art 3 25.5

95 bob 3 63.5

96 frodo 3 25.5

Sailors instance:

sid bid day

22 101 10/10/98

22 102 10/10/98

22 103 10/8/98

22 104 10/7/98

31 102 11/10/98

31 103 11/6/98

31 104 11/12/98

64 101 9/5/98

64 102 9/8/98

74 103 9/8/98

Bid Bname Color

101 Interlake Blue

102 Interlake Red

103 Clipper Green

104 Marine Red

Reserves instance: Boats instance:

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid
 FROM Reserves R
 WHERE R.bid IN (SELECT B.bid
 FROM Boats B
 WHERE B.color = ‘red’))

Deeply Nested Queries

 Find the names of sailors who have not reserved a red boat

 Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

Reserves

Sid Bid Day

22 101 10/10/2013

22 102 10/10/2013

SELECT S.sname

FROM Sailors S

WHERE S.sid NOT IN (SELECT R.sid

 FROM Reserves R

 WHERE R.bid IN (SELECT B.bid
 FROM Boats B
 WHERE B.color = ‘red’))

Boats

Bid Bname Color

101 Interlake Red

102 Clipper Green

sid sname rating age

22 dustin 7 45.0

29 brutus 1 33.0

31 lubber 8 55.5

32 andy 8 25.5

58 rusty 10 35.0

64 horatio 7 35.0

71 zorba 10 16.0

74 horatio 9 35.0

85 art 3 25.5

95 bob 3 63.5

96 frodo 3 25.5

Sailors instance:

sid bid day

22 101 10/10/98

22 102 10/10/98

22 103 10/8/98

22 104 10/7/98

31 102 11/10/98

31 103 11/6/98

31 104 11/12/98

64 101 9/5/98

64 102 9/8/98

74 103 9/8/98

Bid Bname Color

101 Interlake Blue

102 Interlake Red

103 Clipper Green

104 Marine Red

Reserves instance: Boats instance:

SELECT S.sname
FROM Sailors S
WHERE S.sid NOT IN (SELECT R.sid
 FROM Reserves R
 WHERE R.bid IN (SELECT B.bid
 FROM Boats B
 WHERE B.color = ‘red’))

This returns the names of
sailors who have not
reserved a red boat!

sid sname rating age

22 dustin 7 45.0

29 brutus 1 33.0

31 lubber 8 55.5

32 andy 8 25.5

58 rusty 10 35.0

64 horatio 7 35.0

71 zorba 10 16.0

74 horatio 9 35.0

85 art 3 25.5

95 bob 3 63.5

96 frodo 3 25.5

Sailors instance:

sid bid day

22 101 10/10/98

22 102 10/10/98

22 103 10/8/98

22 104 10/7/98

31 102 11/10/98

31 103 11/6/98

31 104 11/12/98

64 101 9/5/98

64 102 9/8/98

74 103 9/8/98

Bid Bname Color

101 Interlake Blue

102 Interlake Red

103 Clipper Green

104 Marine Red

Reserves instance: Boats instance:

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid
 FROM Reserves R
 WHERE R.bid NOT IN (SELECT B.bid
 FROM Boats B
 WHERE B.color = ‘red’))

This returns the names of
sailors who have reserved

a boat that is not red.

The previous one returns
the names of sailors who
have not reserved a red

boat!

sid sname rating age

22 dustin 7 45.0

29 brutus 1 33.0

31 lubber 8 55.5

32 andy 8 25.5

58 rusty 10 35.0

64 horatio 7 35.0

71 zorba 10 16.0

74 horatio 9 35.0

85 art 3 25.5

95 bob 3 63.5

96 frodo 3 25.5

Sailors instance:

sid bid day

22 101 10/10/98

22 102 10/10/98

22 103 10/8/98

22 104 10/7/98

31 102 11/10/98

31 103 11/6/98

31 104 11/12/98

64 101 9/5/98

64 102 9/8/98

74 103 9/8/98

Bid Bname Color

101 Interlake Blue

102 Interlake Red

103 Clipper Green

104 Marine Red

Reserves instance: Boats instance:

SELECT S.sname
FROM Sailors S
WHERE S.sid NOT IN (SELECT R.sid
 FROM Reserves R
 WHERE R.bid NOT IN (SELECT B.bid
 FROM Boats B
 WHERE B.color = ‘red’))

This returns the names of
sailors who have not

reserved a boat that is not
red!

As such, it returns names
of sailors who have

reserved only red boats
(if any)

Correlated Nested Queries

 Find the names of sailors who have reserved boat 101

 Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

Reserves

Sid Bid Day

22 101 10/10/2013

22 102 10/10/2013

SELECT S.sname

FROM Sailors S

WHERE S.sid IN (SELECT R.sid

 FROM Reserves R

 WHERE R.bid=101)

SELECT S.sname

FROM Sailors S

WHERE EXISTS (SELECT *

 FROM Reserves R

 WHERE R.bid=101
 AND R.sid = S.sid)

A correlation

 Allows us to test whether a set is “nonempty” Compares a value with a set of values

Correlated Nested Queries

 Find the names of sailors who have not reserved boat 101

 Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

Reserves

Sid Bid Day

22 101 10/10/2013

22 102 10/10/2013

SELECT S.sname

FROM Sailors S

WHERE NOT EXISTS (SELECT *

 FROM Reserves R

 WHERE R.bid=101
 AND R.sid = S.sid)

SELECT S.sname

FROM Sailors S

WHERE S.sid NOT IN (SELECT R.sid

 FROM Reserves R

 WHERE R.bid=101)

Nested Queries with
Set-Comparison Operators

 Find sailors whose rating is better than some sailor called Dustin

 Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

SELECT S.sname

FROM Sailors S

WHERE S.rating > ANY (SELECT S2. rating

 FROM Sailors S2

 WHERE S2.name = ‘Dustin’)

Q: What if there were no sailors called Dustin?

A: An empty set is returned!

Nested Queries with
Set-Comparison Operators

 Find sailors whose rating is better than every sailor called Dustin

 Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

SELECT S.sname

FROM Sailors S

WHERE S.rating > ALL (SELECT S2. rating

 FROM Sailors S2

 WHERE S2.name = ‘Dustin’)

Q: What if there were no sailors called Dustin?

A: The names of all sailors will be returned! (Be Careful)

Nested Queries with
Set-Comparison Operators

 Find sailors with the highest sid

 Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

SELECT *

FROM Sailors S

WHERE S.sid

is greater than every other sid

Nested Queries with
Set-Comparison Operators

 Find sailors with the highest sid

 Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

SELECT *

FROM Sailors S

WHERE S.sid

is greater than every
(SELECT S2.sid

FROM Sailors S2)

Nested Queries with
Set-Comparison Operators

 Find sailors with the highest sid

 Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

SELECT *

FROM Sailors S

WHERE S.sid

> ALL
(SELECT S2.sid

FROM Sailors S2)

Nested Queries with
Set-Comparison Operators

 Find sailors with the highest sid

 Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

SELECT *

FROM Sailors S

WHERE S.sid

>= ALL
(SELECT S2.sid

FROM Sailors S2)

Nested Queries with
Set-Comparison Operators

 Find sailors with the highest sid- without nested subquery

 Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

SELECT *

FROM Sailors S1, Sailors S2

WHERE S1.sid > S2.sid

Q: What does this give?

Nested Queries with
Set-Comparison Operators

 Find sailors with the highest sid- without nested subquery

Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

S1 S2

S1.Sid S2.sid ….

22 22 ….

22 29 ….

29 22

29 29

S1 × S2

S1.sid > S2.sid



Nested Queries with
Set-Comparison Operators

 Find sailors with the highest sid- without nested subquery

 Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

SELECT *

FROM Sailors S1, Sailors S2

WHERE S1.sid > S2.sid

Q: What does this give?

A: All but the smallest sid!

Nested Queries with
Set-Comparison Operators

 Find sailors with the highest sid- without nested subquery

 Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

SELECT *

FROM Sailors S1, Sailors S2

WHERE S1.sid < S2.sid

Q: What does this give?

A: All but the highest sid!

Nested Queries with
Set-Comparison Operators

 Find sailors with the highest sid- without nested subquery

 Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

(SELECT *
FROM Sailors)
EXCEPT

(SELECT S1.sid, S1.sname, S1.rating, S1.age

FROM Sailors S1, Sailors S2

WHERE S1.sid < S2.sid)

Therefore…

I.e., ALL – (ALL – Highest) = Highest 

Alternative Ways

 Find sailors with the highest sid

 Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

(SELECT *
FROM Sailors)
EXCEPT

(SELECT S1.sid, S1.sname, S1.rating, S1.age

FROM Sailors S1, Sailors S2

WHERE S1.sid < S2.sid)

SELECT *

FROM Sailors S

WHERE S.sid

>= ALL
(SELECT S2.sid

FROM Sailors S2)

VS.

Revisit: Another Example

 Find the names of sailors who have reserved both a
red and a green boat

(select S.sname from Sailors S, Reserves R, Boats B
where S.sid = R.sid and R.bid = B.bid and B.color = ‘green’)
intersect
(select S2.sname from Sailors S2, Reserves R2, Boats B2
where S2.sid = R2.sid and R2.bid = B2.bid and B2.color = ‘red’)

The query contains a “subtle bug” which arises because we are using sname to
identify Sailors, and “sname” is not a key for Sailors!

If we ought to compute the names of such Sailors, we would need a
NESTED QUERY

A Correct Way

 Find the names of sailors who have reserved both a
red and a green boat

(select S.sname from Sailors S, Reserves R, Boats B
where S.sid = R.sid and R.bid = B.bid and B.color = ‘green’)
AND S.sid IN
(select S2.sid from Sailors S2, Reserves R2, Boats B2
where S2.sid = R2.sid and R2.bid = B2.bid and B2.color = ‘red’)

Similarly, queries using EXCEPT can be re-written using NOT IN

Revisit: Another Example

 Find the name and age of the oldest sailor

select S.sname, max (S.age)
from Sailors S

This query is illegal in SQL- If the “select” clause uses an aggregate function, it
must use ONLY aggregate function unless the query contains a “group by” clause!

Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

A Correct Way

 Find the name and age of the oldest sailor

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age = (SELECT MAX(S2.age)
 FROM Sailors S2)

Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

Alternative Ways

 Find the name and age of the oldest sailor

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age = (SELECT MAX(S2.age)
 FROM Sailors S2)

Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

SELECT S.sname, MAX(S.age)
FROM Sailors S
GROUP BY S.sname

VS.

Revisit: Another Example

 Find age of the youngest sailor with age ≥ 18, for each
rating level with at least 2 such sailors

Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

SELECT S.rating, MIN (S.age) AS minage

FROM Sailors S

WHERE S.age >= 18

GROUP BY S.rating

HAVING COUNT (*) > 1

An Alternative Way

 Find age of the youngest sailor with age ≥ 18, for each
rating level with at least 2 such sailors

Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

SELECT S.rating, MIN (S.age) AS minage

FROM Sailors S

WHERE S.age >= 18

GROUP BY S.rating

HAVING 1 < (SELECT COUNT (*)
 FROM Sailors S2
 WHERE S.rating = S2.rating)

OR…

The HAVING clause can
include subqueries!

Yet Another Way

 Find age of the youngest sailor with age ≥ 18, for each
rating level with at least 2 such sailors

Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

SELECT Temp.rating, Temp.minage

FROM (SELECT S.rating, MIN(S.age) AS minage,

 COUNT(*) AS ratingcount

 FROM Sailors S

 WHERE S.age >= 18

 GROUP BY S.rating) AS Temp

WHERE Temp.ratingcount > 1

OR…

The FROM clause can
include subqueries!

Necessary!

Expressing the Division Operator
in SQL

 Find the names of sailors who have reserved all boats

Sailors

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

Reserves

Sid Bid Day

22 101 10/10/2013

22 102 10/10/2013

SELECT S.sname

FROM Sailors S

WHERE NOT EXISTS ((SELECT B.bid
 FROM Boats B)
 EXCEPT

 (SELECT R.bid

 FROM Reserves R

 WHERE R.sid = S.sid))

Boats

Bid Bname Color

101 Interlake Red

102 Clipper Green

Outline

Nested Queries

Insertions, Deletions and
Updates

NULL values and Join Variants



Reminder: Our Mini-U DB

STUDENT

Ssn Name Address

123 smith main str

234 jones QF ave

CLASS

c-id c-name units

15-413 s.e. 2

15-412 o.s. 2

TAKES

SSN c-id grade

123 15-413 A

234 15-413 B

Revisit: Insertions

insert into student
values (123, ‘smith’, ‘main’)

insert into student(ssn, name, address)
values (123, ‘smith’, ‘main’)

OR…

Bulk Insertions

 How to insert, say, a table of ‘foreign-
student’s, in bulk?

insert into student
 select ssn, name, address
 from foreign-student

Revisit: Deletions

 Delete the record of ‘smith’

delete from student
where name=‘smith’

Be careful - it deletes ALL the ‘smith’s!

Revisit: Updates

 Update the grade to ‘A’ for ssn=123 and
course 15-415

 update takes
set grade=‘A’
where ssn = 123 and c-id= ‘15-415’

Updating Views

 Consider the following view:

 What if c-id is modified to ’15-440’?

 What if c-id is deleted?

create view db-takes as
 (select * from takes where c-id=“15-415”)

A Rule of thumb: A command that affects a row in the view affects all
corresponding rows in underlying tables!

View updates are tricky - typically, we can only update views that have
no joins, nor aggregates!

Outline

Nested Queries

Insertions, Deletions and
Updates

NULL values and Join Variants 

NULL Values

 Column values can be unknown (e.g., a sailor may not yet have a
rating assigned)

 Column values may be inapplicable (e.g., a maiden-name column
for men!)

 The NULL value can be used in such situations

 However, the NULL value complicates many issues!
 Using NULL with aggregate operations

 COUNT (*) handles NULL values like any other values
 SUM, AVG, MIN, and MAX discard NULL values

 Comparing NULL values to valid values
 Comparing NULL values to NULL values

Comparing Values In the Presence
of NULL

 Considering a row with rating = NULL and age = 20; what will
be the result of comparing it with the following rows?

 Rating = 8 OR age < 40

 Rating = 8 AND age < 40

 In general:
 NOT unknown

 True OR unknown

 False OR unknown

 False AND unknown

 True AND unknown

 Unknown [AND|OR|=] unknown

 TRUE

 unknown

 unknown
 True
 unknown
 False
 unknown

 unknown
In the context of duplicates, the comparison of two NULL values
is implicitly treated as TRUE (Anomaly!)

Comparing Values In the Presence
of NULL

 Considering a row with rating = NULL and age = 20; what will
be the result of comparing it with the following rows?

 Rating = 8 OR age < 40

 Rating = 8 AND age < 40

 In general:
 NOT unknown

 True OR unknown

 False OR unknown

 False AND unknown

 True AND unknown

 Unknown [AND|OR|=] unknown

 TRUE

 unknown

 unknown
 True
 unknown
 False
 unknown

 unknown

Three-Valued Logic!

Inner Join

 Tuples of a relation that do not match some rows in
another relation (according to a join condition c) do not
appear in the result

 Such a join is referred to as “Inner Join” (so far, all inner joins)

select ssn, c-name
from takes, class
where takes.c-id = class.c-id

select ssn, c-name
from takes join class on takes.c-id = class.c-id

Equivalently:

Inner Join

CLASS

c-id c-name units

15-413 s.e. 2

15-412 o.s. 2

TAKES

SSN c-id grade

123 15-413 A

234 15-413 B

SSN c-name

123 s.e

234 s.e o.s.: gone!

 Find all SSN(s) taking course s.e.

Outer Join

 But, tuples of a relation that do not match some rows in
another relation (according to a join condition c) can still
appear exactly once in the result

 Such a join is referred to as “Outer Join”

 Result columns will be assigned NULL values

select ssn, c-name
from takes outer join class
on takes.c-id=class.c-id

CLASS

c-id c-name units

15-413 s.e. 2

15-412 o.s. 2

TAKES

SSN c-id grade

123 15-413 A

234 15-413 B

SSN c-name

123 s.e

234 s.e.

null o.s.

Outer Join

 Find all SSN(s) taking course s.e.

Joins

 In general:

select [column list]
from table_name
 [inner | {left | right | full} outer] join
 table_name
 on qualification_list
Where …

Summary

 Nested Queries
 IN, NOT IN, EXISTS, NOT EXISTS, op ANY and op ALL where op

ϵ {<. <=, =, <>, >=, >}

 Re-writing INTERSECT using IN

 Re-writing EXCEPT using NOT IN

 Expressing the division operation using NOT EXISTS and
EXCEPT (there are other ways to achieve that!)

 Other DML commands: INSERT (including bulk
insertions), DELETE and UPDATE (for tables and views)

 Null values and inner vs. outer Joins

Next Class

SQL- Part III &

Storing Data: Disks and Files (if
time allows)

