
Database Applications (15-415)

The Relational Model
Lecture 3, January 20, 2014

Mohammad Hammoud

Today…
 Last Session:

 The entity relationship (ER) model

 Today’s Session:

 The relational model

 Basic Constructs of the relational model

 Basic SQL

 How to translate an ER diagram into a relational schema?

 Announcements:

 PS1 is due on Jan 23, 2014 (i.e., Thursday) by midnight

 In the next recitation we will practice on translating ER designs into
relational databases

Outline

Introduction

Basic SQL

Translating ER Diagrams to Tables

Why Study the Relational Model?

 Most widely used model

 Vendors: IBM/Informix, Microsoft, Oracle, Sybase, etc.

 “Legacy systems” in older models

 E.g., IBM’s IMS

 Object-Oriented concepts have merged into

 An object-relational model

 Informix->IBM DB2, Oracle 8i

What is the Relational Model?

 The relational model adopts a “tabular” representation

 A database is a collection of one or more relations

 Each relation is a table with rows and columns

 What is unique about the relational model as opposed
to older data models?

 Its simple data representation

 Ease with which complex queries can be expressed

Basic Constructs

 The main construct in the relational model is the relation

 A relation consists of:

1. A schema which includes:

 The relation’s name

 The name of each column

 The domain of each column

2. An instance which is a set of tuples

 Each tuple has the same number of columns as the
relation schema

The Domain Constraints

 A relation schema specifies the domain of each column which
entails domain constraints

 A domain constraint specifies a condition by which each
instance of a relation should satisfy

 The values that appear in a column must be drawn from the
domain associated with that column

 Who defines a domain constraint?

 DBA

 Who enforces a domain constraint?

 DBMS

More Details on the Relational Model

 What is the relational database schema (not the relation schema)?
 A collection of schemas for the relations in the database

 What is the instance of a relational database (not the instance
of a relation)?
 A collection of relation instances

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@eecs 18 3.2

53650 Smith smith@math 19 3.8

Degree (or arity) = # of fields

Cardinality =
of tuples

An instance of the “Students” relation

Outline

Introduction

Basic SQL

Translating ER Diagrams to Tables

10

 SQL (a.k.a. “Sequel”) stands for Structured Query Language

 SQL was developed by IBM (system R) in the 1970s

 There is a need for a standard since SQL is used by
many vendors

 Standards:

 SQL-86

 SQL-89 (minor revision)

 SQL-92 (major revision)

 SQL-99 (major extensions, current standard)

SQL - A Language for Relational DBs

11

 The SQL language has two main aspects (there are other
aspects which we discuss next week)
 Data Definition Language (DDL)

 Allows creating, modifying, and deleting relations
and views

 Allows specifying constraints

 Allows administering users, security, etc.

 Data Manipulation Language (DML)

 Allows posing queries to find tuples that satisfy criteria

 Allows adding, modifying, and removing tuples

DDL and DML

12

 S1 can be used to create the “Students” relation

 S2 can be used to create the “Enrolled” relation

Creating Relations in SQL

CREATE TABLE Students
 (sid: CHAR(20),
 name: CHAR(20),
 login: CHAR(10),
 age: INTEGER,

 gpa: REAL)

CREATE TABLE Enrolled
 (sid: CHAR(20),
 cid: CHAR(20),
 grade: CHAR(2))

The DBMS enforces domain constraints whenever tuples are added or modified

S1

S2

Adding and Deleting Tuples

 We can insert a single tuple to the “Students” relation using:

INSERT INTO Students (sid, name, login, age, gpa)

VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

 We can delete all tuples from the “Students” relation
which satisfy some condition (e.g., name = Smith):

DELETE

FROM Students S

WHERE S.name = ‘Smith’

Powerful variants of these commands are available; more next week!

Querying a Relation

 How can we find all 18-year old students?

 How can we find just names and logins?

SELECT *

FROM Students S

WHERE S.age=18

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

SELECT S.name, S.login

FROM Students S

WHERE S.age=18

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@eecs 18 3.2

53650 Smith smith@math 19 3.8

 Querying Multiple Relations
 What does the following query compute assuming S and E?

SELECT S.name, E.cid

FROM Students S, Enrolled E

WHERE S.sid=E.sid AND E.grade=“A”

S.name E.cid

Smith Topology112

sid cid grade

53831 Carnatic101 C

53831 Reggae203 B

53650 Topology112 A

53666 History105 B

We get:

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@eecs 18 3.2

53650 Smith smith@math 19 3.8

S E

Destroying and Altering Relations

 How to destroy the relation “Students”?

DROP TABLE Students

 How to alter the schema of “Students” in order
to add a new field?

ALTER TABLE Students

 ADD COLUMN firstYear: integer

 The schema information and the tuples are deleted

Every tuple in the current instance is extended with a null value in the
new field!

Integrity Constraints (ICs)

 An IC is a condition that must be true for any instance
of the database (e.g., domain constraints)
 ICs are specified when schemas are defined
 ICs are checked when relations are modified

 A legal instance of a relation is one that satisfies all
specified ICs
 DBMS should not allow illegal instances

 If the DBMS checks ICs, stored data is more faithful to
real-world meaning
 Avoids data entry errors, too!

18

 Keys help associate tuples in different relations

 Keys are one form of integrity constraints (ICs)

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

sid cid grade

53666 15-101 C

53666 18-203 B

53650 15-112 A

53666 15-105 B

Enrolled
Students

Keys

19

• Keys help associate tuples in different relations

• Keys are one form of integrity constraints (ICs)

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

sid cid grade

53666 15-101 C

53666 18-203 B

53650 15-112 A

53666 15-105 B

PRIMARY Key FOREIGN Key

Keys

Enrolled
Students

20

 A set of fields is a superkey if:
 No two distinct tuples can have same values in all key fields

 A set of fields is a primary key for a relation if:

 It is a minimal superkey

 What if there is more than one key for a relation?
 One of the keys is chosen (by DBA) to be the primary key
 Other keys are called candidate keys

 Examples:

 sid is a key for Students (what about name?)
 The set {sid, name} is a superkey (or a set of fields that contains a key)

Superkey, Primary and Candidate Keys

21

Primary and Candidate Keys in SQL

 Many candidate keys (specified using UNIQUE) can be designated
and one is chosen as a primary key

 Keys must be used carefully!

 “For a given student and course, there is a single grade”

Primary and Candidate Keys in SQL

 Many candidate keys (specified using UNIQUE) can be designated
and one is chosen as a primary key

 Keys must be used carefully!

 “For a given student and course, there is a single grade”

CREATE TABLE Enrolled
 (sid CHAR(20)
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid,cid))

CREATE TABLE Enrolled
 (sid CHAR(20)
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid),
 UNIQUE (cid, grade))

 vs.

Primary and Candidate Keys in SQL

 Many candidate keys (specified using UNIQUE) can be designated
and one is chosen as a primary key

 Keys must be used carefully!

 “For a given student and course, there is a single grade”

CREATE TABLE Enrolled
 (sid CHAR(20)
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid,cid))

CREATE TABLE Enrolled
 (sid CHAR(20)
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid),
 UNIQUE (cid, grade))

 vs.

Q: What does this mean?

Primary and Candidate Keys in SQL

 Many candidate keys (specified using UNIQUE) can be designated
and one is chosen as a primary key

 Keys must be used carefully!

 “For a given student and course, there is a single grade”

CREATE TABLE Enrolled
 (sid CHAR(20)
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid,cid))

CREATE TABLE Enrolled
 (sid CHAR(20)
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid),
 UNIQUE (cid, grade))

 vs.

“A student can take only one course, and no two students in a course receive the
same grade”

25

Foreign Keys and Referential Integrity

 A foreign key is a set of fields referring to a tuple
in another relation

 It must correspond to the primary key of the
other relation

 It acts like a `logical pointer’

 If all foreign key constraints are enforced,
referential integrity is said to be achieved
(i.e., no dangling references)

26

Foreign Keys in SQL

 Example: Only existing students may enroll for
courses

 sid is a foreign key referring to Students

 How can we write this in SQL?

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

sid cid grade

53666 15-101 C

53666 18-203 B

53650 15-112 A

53666 15-105 B

Enrolled
Students

27

 CREATE TABLE Enrolled
 (sid CHAR(20),cid CHAR(20),grade CHAR(2),
 PRIMARY KEY (sid,cid),
 FOREIGN KEY (sid) REFERENCES Students)

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

sid cid grade

53666 15-101 C

53666 18-203 B

53650 15-112 A

53666 15-105 B

 Example: Only existing students may enroll for
courses

Enrolled
Students

Foreign Keys in SQL

Enforcing Referential Integrity

 What should be done if an “Enrolled” tuple with a non-
existent student id is inserted? (Reject it!)

 What should be done if a “Students” tuple is deleted?
 Disallow its deletion

 Delete all Enrolled tuples that refer to it

 Set sid in Enrolled tuples that refer to it to a default sid

 Set sid in Enrolled tuples that refer to it to a special value
null, denoting `unknown’ or `inapplicable’

 What if a “Students” tuple is updated?

Referential Integrity in SQL

 SQL/92 and SQL:1999 support
all 4 options on deletes
and updates

 Default is NO ACTION (i.e.,
delete/update is
rejected)

 CASCADE (also delete all
tuples that refer to the
deleted tuple)

 SET NULL / SET DEFAULT (sets
foreign key value of
referencing tuple)

CREATE TABLE Enrolled

 (sid CHAR(20),

 cid CHAR(20),
 grade CHAR(2),

 PRIMARY KEY (sid,cid),

 FOREIGN KEY (sid)

 REFERENCES Students

 ON DELETE CASCADE
 ON UPDATE SET DEFAULT)

What does this mean?

Where do ICs Come From?

 ICs are based upon the semantics of the real-world
enterprise that is being described in the
database relations

 We can check a database instance to see if an IC is
violated, but we can NEVER infer that an IC is true by
looking at an instance
 An IC is a statement about all possible instances!
 From the “Students” relation, we know name is not a key,

but the assertion that sid is a key is given to us

 Key and foreign key ICs are the most common; more
general ICs are supported too

Views
 A view is a table whose rows are not explicitly stored but

computed as needed

CREATE VIEW YoungActiveStudents (name, grade)

 AS SELECT S.name, E.grade

 FROM Students S, Enrolled E

 WHERE S.sid = E.sid and S.age<21

 Views can be queried
 Querying YoungActiveStudents would necessitate computing it first then

applying the query on the result as being like any other relation

 Views can be dropped using the DROP VIEW command
 How to handle DROP TABLE if there’s a view on the table?

 DROP TABLE command has options to let the user specify this

Views and Security
 Views can be used to present necessary information, while

hiding details in underlying relation(s)

 If the schema of an old relation is changed, a view can be defined
to represent the old schema

 This allows applications to transparently assume the old schema

 Views can be defined to give a group of users access to just
the information they are allowed to see

 E.g., we can define a view that allows students to see other
students’ names and ages, but not GPAs (also students can be
prevented from accessing the underlying “Students” relation)

Views and Security
 Views can be used to present necessary information, while

hiding details in underlying relation(s)

 If the schema of an old relation is changed, a view can be defined
to represent the old schema

 This allows applications to transparently assume the old schema

 Views can be defined to give a group of users access to just
the information they are allowed to see

 E.g., we can define a view that allows students to see other
students’ names and ages, but not GPAs (also students can be
prevented from accessing the underlying “Students” relation)

Logical Data Independence!

Views and Security
 Views can be used to present necessary information, while

hiding details in underlying relation(s)

 If the schema of an old relation is changed, a view can be defined
to represent the old schema

 This allows applications to transparently assume the old schema

 Views can be defined to give a group of users access to just
the information they are allowed to see

 E.g., we can define a view that allows students to see other
students’ names and ages, but not GPAs (also students can be
prevented from accessing the underlying “Students” relation)

Logical Data Independence!

Security!

Outline

Introduction

Basic SQL

Translating ER Diagrams to Tables

CREATE TABLE Employees

 (ssn CHAR(11),

 name CHAR(20),

 lot INTEGER,

 PRIMARY KEY (ssn))
Employees

ssn
name

lot

Strong Entity Sets to Tables

Relationship Sets to Tables

 In translating a relationship set to a relation, attributes of the
relation must include:

1. Keys for each participating entity set (as foreign keys)
 This set of attributes forms a superkey for the relation

2. All descriptive attributes

 Relationship sets
 1-to-1, 1-to-many, and many-to-many

 Total/Partial participation

M-to-N Relationship Sets to Tables

dname

budget did

since

lot

name

ssn

Works_In Employees Departments

CREATE TABLE Works_In(
 ssn CHAR(11),
 did INTEGER,
 since DATE,
 PRIMARY KEY (ssn, did),
 FOREIGN KEY (ssn)
 REFERENCES Employees,
 FOREIGN KEY (did)
 REFERENCES Departments)

1-to-M Relationship Sets to Tables

dname

budget did

since

lot

name

ssn

Manages Employees Departments

CREATE TABLE Manages(
 ssn CHAR(11),
 did INTEGER,
 since DATE,

 PRIMARY KEY (did),
 FOREIGN KEY (ssn)
REFERENCES Employees,
 FOREIGN KEY (did)
REFERENCES Departments)

CREATE TABLE Departments(
 did INTEGER),
 dname CHAR(20),
 budget REAL,
 PRIMARY KEY (did),
)

Approach 1:
Create separate tables for Manages and Departments

Can ssn take a
null value?

1-to-M Relationship Sets to Tables

dname

budget did

since

lot

name

ssn

Manages Employees Departments

CREATE TABLE Dept_Mgr(
 ssn CHAR(11),
 did INTEGER,
 since DATE,
 dname CHAR(20),
 budget REAL,
 PRIMARY KEY (did),
 FOREIGN KEY (ssn)
 REFERENCES Employees)

Approach 2:
Create a table for only the Departments entity set (i.e., take advantage of the key constraint)

Can ssn take a
null value?

One-Table vs. Two-Table Approaches

 The one-table approach:

(+) Eliminates the need for a separate table for the
involved relationship set (e.g., Manages)

(+) Queries can be answered without combining
information from two relations

(-) Space could be wasted!
 What if several departments have no managers?

 The two-table approach:
 The opposite of the one-table approach!

Translating Relationship Sets with
Participation Constraints

 What does the following ER diagram entail (with respect
to Departments and Managers)?

lot

name dname

budget did

since
name dname

budget did

since

Manages

since

Departments Employees

ssn

Works_In

Every did value in Departments table must appear in a row of the
Manages table- if defined- (with a non-null ssn value!)

Translating Relationship Sets with
Participation Constraints

 Here is how to create the “Dept_Mgr” table using the
one-table approach:

Can this be captured using the two-table approach?

CREATE TABLE Dept_Mgr(
 did INTEGER,
 dname CHAR(20),
 budget REAL,
 ssn CHAR(11) NOT NULL,
 since DATE,
 PRIMARY KEY (did),
 FOREIGN KEY (ssn) REFERENCES Employees,
 ON DELETE NO ACTION)

Translating Relationship Sets with
Participation Constraints

 Here is how to create the “Dept_Mgr” table using the
one-table approach:

Would this work?

CREATE TABLE Dept_Mgr(
 did INTEGER,
 dname CHAR(20),
 budget REAL,
 ssn CHAR(11) NOT NULL,
 since DATE,
 PRIMARY KEY (did),
 FOREIGN KEY (ssn) REFERENCES Employees,
 ON DELETE SET NULL)

Translating Weak Entity Sets

 A weak entity set always:

 Participates in a one-to-many binary relationship

 Has a key constraint and total participation

 Which approach is ideal for that?

 The one-table approach

lot

name

age dname

Dependents Employees

ssn

Policy

cost

Translating Weak Entity Sets
 Here is how to create “Dep_Policy” using the

one-table approach

lot

name

age dname

Dependents Employees

ssn

Policy

cost

CREATE TABLE Dep_Policy (
 dname CHAR(20),
 age INTEGER,
 cost REAL,
 ssn CHAR(11) NOT NULL,
 PRIMARY KEY (dname, ssn),
 FOREIGN KEY (ssn) REFERENCES Employees,
 ON DELETE CASCADE)

Translating ISA Hierarchies to Relations

Contract_Emps

name

ssn

Employees

lot

hourly_wages

ISA

Hourly_Emps

contractid

hours_worked

 Consider the following example:

Translating ISA Hierarchies to Relations

 General approach:
 Create 3 relations: “Employees”,

“Hourly_Emps” and “Contract_Emps”

 How many times do we record an employee?

 What to do on deletions?

 How to retrieve all info about an employee?

EMP (ssn, name, lot)

H_EMP(ssn, h_wg, h_wk) CONTR(ssn, cid)

Contract_Emps

name
ssn

Employees

lot

hourly_wages
ISA

Hourly_Emps

contractid

hours_worked

Translating ISA Hierarchies to Relations

 Alternatively:
 Just create 2 relations “Hourly_Emps”

and “Contract_Emps”

 Each employee must be in one of these
two subclasses

EMP (ssn, name, lot)

H_EMP(ssn, h_wg, h_wk, name, lot) CONTR(ssn, cid, name, lot)

Notice: ‘black’ is gone!

Contract_Emps

name
ssn

Employees

lot

hourly_wages
ISA

Hourly_Emps

contractid

hours_worked

Translating Aggregations

 Consider the following example:

budget did pid

started_on

pbudget

dname

until

Departments Projects Sponsors

Employees

Monitors

lot
name

ssn

since

Translating Aggregations
 Standard approach:

 The Employees, Projects and Departments
entity sets and the Sponsors relationship sets
are translated as described previously

 For the Monitors relationship,
we create a relation with
the following attributes:

 The key attribute of Employees (i.e., ssn)

 The key attributes of Sponsors (i.e., did, pid)

 The descriptive attributes of Monitors (i.e., until)

budget did pid

started_on

pbudget

dname

until

Departments Projects Sponsors

Employees

Monitors

lot

name

ssn

since

52

The Relational Model: A Summary

 A tabular representation of data

 Simple and intuitive, currently one of the most widely used

 Object-relational variant is gaining ground

 Integrity constraints can be specified (by the DBA) based on
application semantics (DBMS checks for violations)

 Two important ICs: primary and foreign keys

 Also: not null, unique

 In addition, we always have domain constraints

 Mapping from ER to Relational is (fairly) straightforward!

53

ER to Tables - Summary of Basics

 Strong entities:
 Key -> primary key

 (Binary) relationships:
 Get keys from all participating entities:
 1:1 -> either key can be the primary key
 1:N -> the key of the ‘N’ part will be the primary key
 M:N -> both keys will be the primary key

 Weak entities:
 Strong key + partial key -> primary key
 ON DELETE CASCADE

54

ER to Tables - Summary of Advanced

 Total/Partial participation:
 NOT NULL

 Ternary relationships:
 Get keys from all; decide which one(s) -> primary Key

 Aggregation: like relationships

 ISA:
 3 tables (most general)
 2 tables (‘total coverage’)

Next Class

Relational Algebra

