
Database Applications (15-415)

Hadoop
Lecture 24, April 23, 2014

Mohammad Hammoud

Today…
 Last Session:
 NoSQL databases

 Today’s Session:
 Hadoop = HDFS + MapReduce

 Announcements:
 Final Exam is on Sunday April 27th, at 9:00AM in room 2051

(all materials are included- open book, open notes)
 We will hold a “review session” (for the final exam)

tomorrow during the recitation
 PS4 grades are out
 PS5 (the “last” assignment) is due tomorrow, by midnight

Outline

A “Very Brief” Primer and GFS/HDFS

MapReduce: Systems and Applications
Perspectives

MapReduce: Programming, Computation,
Architectural and Scheduling Models

Fault-Tolerance in MapReduce

Hadoop MapReduce

 MapReduce is one of the most successful realizations of large-
scale “data-parallel” distributed analytics engines

 Hadoop is an open source
implementation of MapReduce

 Hadoop MapReduce uses Hadoop Distributed File System
(HDFS) as a distributed storage layer

 HDFS is an open source implementation of GFS

GFS Data Distribution Policy
 The Google File System (GFS) is a scalable DFS for data-

intensive applications

 GFS divides large files into multiple pieces called chunks or blocks

(by default 64MB) and stores them on different data servers
 This design is referred to as block-based design

 Each GFS chunk has a unique 64-bit identifier and is stored as a

file in the lower-layer local file system on the data server

 GFS distributes chunks across cluster data servers using a random
distribution policy

GFS Random Distribution Policy

Server 0
(Writer)

Blk
0

Blk
1

Blk
2

Blk
3

Blk
4

Blk
5

Blk
6

Server 1

Blk
0

Blk
2

Blk
3

Blk
3

Blk
5

0M

64M

128M

192M

256M

320M

384M

Server 2 Server 3

Blk
1

Blk
2

Blk
4

Blk
6

Blk
0

Blk
1

Blk
4

Blk
5

Blk
6

Large File Blk
0

Blk
1

Blk
2

Blk
3

Blk
4

Blk
5

Blk
6

GFS Architecture
 GFS adopts a master-slave architecture

GFS client Master

Chunk Server

Linux File
System

Chunk Server

Linux File
System

Chunk Server

Linux File
System

File name

Contact address

Chunk Id, range

Chunk data

Outline

A “Very Brief” Primer and GFS/HDFS

MapReduce: Systems and Applications
Perspectives

MapReduce: Programming, Computation,
Architectural and Scheduling Models

Fault-Tolerance in MapReduce

The Problem Scope
 Hadoop MapReduce is used for powerful and efficient

analytics over Big Data

 The power of MapReduce lies in its ability to scale to 100s and

even 1000s of machines

 What amount of work can MapReduce handle?
 Big Data in the order of 100s of GBs, TBs or PBs

 It is unlikely that datasets of such sizes can fit on a

single machine
 Hence, a storage layer like HDFS is required!

9

Hadoop MapReduce: A System’s View
 Hadoop MapReduce incorporates two phases, Map and Reduce phases,

which encompass multiple Map and Reduce tasks

Map
Task

Map
Task

Map
Task

Map
Task

Reduce
Task

Reduce
Task

Reduce
Task

Partition
Partition

Partition

Partition

Partition
Partition Partition
Partition

Partition

To HDFS Dataset

HDFS

HDFS BLK

HDFS BLK

HDFS BLK

HDFS BLK

Map Phase
Shuffle Stage

Merge
Stage Reduce Stage

Reduce Phase

10

Partition

Split 0

Split 1

Split 2

Split 3

Partition
Partition

Partition

Partition
Partition

Partition

Partition

Data Structure: Keys and Values
 The MapReduce programmer has to specify only two

“sequential” functions, the Map and the Reduce functions
 These functions will be translated “automatically” into multiple

Map and Reduce tasks

 In MapReduce, data elements are always structured as
key-value (i.e., (K, V)) pairs
 In particular, the Map and Reduce functions receive and emit

(K, V) pairs

(K, V)
Pairs

Map
Function

(K’, V’)
Pairs

Reduce
Function

(K’’, V’’)
Pairs

Input Splits Intermediate Outputs Final Outputs

WordCount: An Application View

12

Mohammad is
delivering a
lecture at CMUQ
CMUQ is a
member of QF

A Text File
Mohammad is
delivering a
lecture at CMUQ

CMUQ is a
member of QF

A Chunk of File

A Chunk of File

A Map Function

Parse
&

Count

Key1 Value1

0 Mohammad is

20 delivering a

18 lecture at
CMUQ

Key2 Value2

Mohammad 1

is 1

delivering 1

a 1

lecture 1

at 1

CMUQ 1

Key2 Value2

Mohammad 1

is 2

delivering 1

a 2

lecture 1

at 1

CMUQ 2

member 1

of 1

QF 1

Iterate
&

Sum

Parse
&

Count

Key1 Value1

0 CMUQ is a

17 member of QF

Key2 Value2

CMUQ 1

is 1

a 1

member 1

of 1

QF 1

A Map Function

A Reduce
Function

Hadoop MapReduce: A Closer Look

Chunk

Chunk

InputFormat

Split Split Split

RR RR RR

Map Map Map

Input (K, V) pairs

Partitioner

Intermediate (K, V) pairs

Sort

Reduce

OutputFormat

Chunks loaded from a (local) HDFS datanode

RecordReaders

Final (K, V) pairs

Writeback to
HDFS store

Chunk

Chunk

InputFormat

Split Split Split

RR RR RR

Map Map Map

Input (K, V) pairs

Partitioner

Intermediate (K, V) pairs

Sort

Reduce

OutputFormat

Chunks loaded from a (local) HDFS datanode

RecordReaders

Final (K, V) pairs

Writeback to
HDFS store

Node 1 Node 2

Shuffling
Process

Intermediate
(K,V) pairs

exchanged by
all nodes

. . .
. . .

Outline

A “Very Brief” Primer and GFS/HDFS

MapReduce: Systems and Applications
Perspectives

MapReduce: Programming, Computation,
Architectural and Scheduling Models

Fault-Tolerance in MapReduce

The Programming Model
 Hadoop MapReduce employs a shared-memory programming model

 This entails two main issues:

 Developers need not “explicitly” encode functions that send/receive
messages within their MapReduce programs

 HDFS provides a shared abstraction to all tasks

MT1 MT2 MT3 MT4 MT5 MT6

A “Shared-Memory” Storage Address Space (Provided by HDFS)

RT1 RT2 RT3

“Implicit” communication (Provided by the MapReduce Engine)

A “Shared-Memory” Storage Address Space (Provided by HDFS)

Merge & Sort
Stage

The Computation Model
 Hadoop MapReduce adopts a synchronous computation model

 A distributed program is said to be synchronous if and only if the

tasks operate in a lock-step mode

 MT1

MT2

MT3

Partition0

Partition1

Partition2

Partition3

Partition4

Partition5

RT1 Partition0

Partition1

Map Phase

Shuffle Stage Reduce Stage

Reduce Phase

Shuffle, Merge and Sort start
ONLY after 5% of Map Tasks commit!

Reduce starts ONLY after
ALL partitions are
shuffled merged
and sorted!

The Architectural and Scheduling
Models

 Hadoop MapReduce employs a master-slave architecture

The Architectural and Scheduling
Models

 Hadoop MapReduce employs a master-slave architecture

 A pull-based “task” scheduling strategy is used, whereby:
 Map tasks are scheduled nearby HDFS blocks
 Reduce tasks are scheduled anywhere

Core Switch

TaskTracker1

Request a Map Task
Schedule a Map Task at an Empty Map Slot on TaskTracker1

Rack Switch 1 Rack Switch 2

TaskTracker2 TaskTracker3 TaskTracker4 TaskTracker5 JobTracker
MT1 MT2 MT3 MT2 MT3

Job Scheduling in MapReduce

 An application is represented by one or many jobs

 A job consists of one or many Map and Reduce tasks

 Hadoop MapReduce comes with various choices of

job schedulers:
 FIFO Scheduler: schedules jobs in order of submission

 Fair Scheduler: aims at giving every user a “fair” share of

the cluster capacity over time

 Capacity Scheduler: Similar to Fair Scheduler but does not
apply job preemption

19

Summary

20

Aspect Hadoop MapReduce Aspect Hadoop MapReduce
Parallelism Model Data-Parallel

Aspect Hadoop MapReduce
Parallelism Model Data-Parallel

Programming Model Shared-Memory

Aspect Hadoop MapReduce
Parallelism Model Data-Parallel

Programming Model Shared-Memory

Computation Model Synchronous

Aspect Hadoop MapReduce
Parallelism Model Data-Parallel

Programming Model Shared-Memory

Computation Model Synchronous

Architectural Model Master-Slave

Aspect Hadoop MapReduce
Parallelism Model Data-Parallel

Programming Model Shared-Memory

Computation Model Synchronous

Architectural Model Master-Slave

Scheduling Model Pull-Based

Aspect Hadoop MapReduce
Parallelism Model Data-Parallel

Programming Model Shared-Memory

Computation Model Synchronous

Architectural Model Master-Slave

Scheduling Model Pull-Based

Application Suitability Loosely-Connected/Embarrassingly-Parallel Applications

Outline

A “Very Brief” Primer and GFS/HDFS

MapReduce: Systems and Applications
Perspectives

MapReduce: Programming, Computation,
Architectural and Scheduling Models

Fault-Tolerance in MapReduce

Fault Tolerance in Hadoop:
Node Failures

 MapReduce can guide jobs toward a successful completion even
when jobs are run on large clusters (where probability of
failures increases)

 Hadoop MapReduce achieves fault-tolerance through
restarting tasks

 If a TT fails to communicate with JT for a period of time (by default,
1 minute), JT will assume that TT in question has crashed
 If the job is still in the Map phase, JT asks another TT to re-

execute all Map tasks that previously ran at the failed TT

 If the job is in the Reduce phase, JT asks another TT to re-
execute all Reduce tasks that were in-progress on the failed TT

22

Fault Tolerance in Hadoop:
Speculative Execution

 A MapReduce job is dominated by the slowest task

 MapReduce attempts to locate slow tasks (or stragglers) and run
replicated (or speculative) tasks that will optimistically commit
before the stragglers

 In general, this strategy is known as task resiliency or task
replication (as opposed to data replication), but in Hadoop it is
referred to as speculative execution

 Only one copy of a straggler is allowed to be replicated

 Whichever copy (among the two copies) of a task commits first, it
becomes the definitive copy, and the other one is killed by JT

But, How to Locate Stragglers?

 Hadoop monitors each task progress using a progress score
between 0 and 1

 If a task’s progress score is less than (average – 0.2), and the
task has run for at least 1 minute, it is marked
as a straggler

PS= 2/3

PS= 1/12

 Not a straggler T1

T2

Time

A straggler

Next Class

A Review Session

	Database Applications (15-415)��Hadoop�Lecture 24, April 23, 2014
	Today…
	Outline
	Hadoop MapReduce
	GFS Data Distribution Policy
	GFS Random Distribution Policy
	GFS Architecture
	Outline
	The Problem Scope
	Hadoop MapReduce: A System’s View
	Data Structure: Keys and Values
	WordCount: An Application View
	Hadoop MapReduce: A Closer Look
	Outline
	The Programming Model
	The Computation Model
	The Architectural and Scheduling Models
	The Architectural and Scheduling Models
	Job Scheduling in MapReduce
	Summary
	Outline
	Fault Tolerance in Hadoop: �Node Failures
	Fault Tolerance in Hadoop: �Speculative Execution
	But, How to Locate Stragglers?
	Next Class

