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Today… 
 Last Session: 
 Recovery Management (finished) 

 
 

 Today’s Session: 
 NoSQL databases 

 
 Announcements: 
 Final Exam is on Sunday April 27th, at 9:00AM in room 2051 

(all materials are included- open book, open notes) 
 We will hold a “review session” (for the final exam) on 

Thursday, April 24th during the recitation 
 PS5 (the “last” assignment) is due on Thursday, April 24th, 

by midnight 
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Types of Data 
 Data can be broadly classified into four types: 

1. Structured Data:  
 Have a predefined model, which organizes data into a 

form that is relatively easy to store, process, retrieve  
and manage 
 E.g., relational data 

 

2. Unstructured Data: 
 Opposite of structured data 
 E.g., Flat binary files containing text, video or audio 
 Note: data is not completely devoid of a structure (e.g., 

an audio file may still have an encoding structure and 
some metadata associated with it) 
 

 



Types of Data 

 Data can be broadly classified into four types: 
3. Dynamic Data:  
 Data that changes relatively frequently 
 E.g., office documents and transactional entries in a 

financial database 
 

4. Static Data: 
 Opposite of dynamic data 
 E.g., Medical imaging data from MRI or CT scans 

 
 



Why Classifying Data? 
 Segmenting data into one of the following 4 quadrants can help in 

designing and developing a pertaining storage solution  
 
 
 
 
 
 

 Relational databases are usually used for structured data 
 

 File systems or NoSQL databases can be used for (static), 
unstructured data (more on these later) 
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Scaling Traditional Databases 

 Traditional RDBMSs can be either scaled: 
 Vertically (or Up) 
 Can be achieved by hardware upgrades (e.g., faster CPU, 

more memory, or larger disk) 
 Limited by the amount of CPU, RAM and disk that can be 

configured on a single machine 
 

 Horizontally (or Out) 
 Can be achieved by adding more machines 
 Requires database sharding and probably replication 
 Limited by the Read-to-Write ratio and communication 

overhead 

 
 

 



Why Sharding Data? 

 Data is typically sharded (or striped) to allow for 
concurrent/parallel accesses 

 
 

 
Input data: A large file 

Machine 1 
 Chunk1 of input data 

Machine 2 
 Chunk3 of input data 

Machine 3 
 Chunk5 of input data 

Chunk2 of input data Chunk4 of input data Chunk5 of input data 

E.g., Chunks 1, 3 and 5 can be accessed in parallel 



Amdahl’s Law 

 How much faster will a parallel program run? 
 Suppose that the sequential execution of a program takes T1 time 

units and the parallel execution on p processors/machines takes 
Tp time units 
 

 Suppose that out of the entire execution of the program, s 
fraction of it is not parallelizable while 1-s fraction is parallelizable 
 

 Then the speedup (Amdahl’s formula): 
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Amdahl’s Law: An Example 

 Suppose that: 
 80% of your program can be parallelized 
 4 machines are used to run your parallel version of  

the program 
 

 The speedup you can get according to Amdahl’s law is: 
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Although you use 4 processors you cannot get a speedup more 
than 2.5 times! 



Real Vs. Actual Cases 
 Amdahl’s argument is too simplified 

 
 In reality, communication overhead and potential workload 

imbalance exist upon running parallel programs 
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1. Parallel Speed-up: An Ideal Case 

Cannot be parallelized 
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2. Parallel Speed-up: An Actual Case 

Cannot be parallelized 

Can be parallelized 

Load Unbalance 

Communication overhead 



Some Guidelines 

 Here are some guidelines to effectively benefit  
from parallelization: 
1. Maximize the fraction of your program that can 

be parallelized  
 

2. Balance the workload of parallel processes 
 

3. Minimize the time spent for communication 
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Why Replicating Data? 

 Replicating data across servers helps in:  
 Avoiding performance bottlenecks 
 Avoiding single point of failures 
 And, hence, enhancing scalability and availability 
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But, Consistency Becomes a Challenge 

 An example: 
 In an e-commerce application, the bank database has 

been replicated across two servers 
 Maintaining consistency of replicated data is a challenge 
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The Two-Phase Commit Protocol 

 The two-phase commit protocol (2PC) can be used to 
ensure atomicity and consistency  

 
 

 
Database Server 1 Participant 1 

Coordinator Database Server 2 Participant 2 

Database Server 3 Participant 3 

VOTE_REQUEST 

VOTE_REQUEST 

VOTE_REQUEST 

Phase I: Voting 

VOTE_COMMIT 

VOTE_COMMIT 

VOTE_COMMIT 



The Two-Phase Commit Protocol 

 The two-phase commit protocol (2PC) can be used to 
ensure atomicity and consistency  

 
 

 
Database Server 1 Participant 1 

Coordinator Database Server 2 Participant 2 

Database Server 3 Participant 3 

GLOBAL_COMMIT 

GLOBAL_COMMIT 

GLOBAL_COMMIT 

Phase II: Commit 
LOCAL_COMMIT 

LOCAL_COMMIT 

LOCAL_COMMIT 

“Strict” consistency, which 
limits scalability! 



Outline 

Types of Data 

Scaling Databases & the 2PC Protocol 

The CAP Theorem and the BASE 
Properties 

NoSQL Databases 

  



The CAP Theorem 

 The limitations of distributed databases can be described 
in the so called the CAP theorem 
 Consistency: every node always sees the same data at any 

given instance (i.e., strict consistency) 
 

 Availability: the system continues to operate, even if nodes 
in a cluster crash, or some hardware or software parts are 
down due to upgrades 
 

 Partition Tolerance: the system continues to operate in the 
presence of network partitions 

 
 

CAP theorem: any distributed database with shared data, can have at most two 
of the three desirable properties, C, A or P 



The CAP Theorem (Cont’d) 
 Let us assume two nodes on opposite sides of a  

network partition: 
 
 
 

 Availability + Partition Tolerance forfeit Consistency 
 

 Consistency + Partition Tolerance entails that one side of 
the partition must act as if it is unavailable, thus  
forfeiting Availability 

 

 Consistency + Availability is only possible if there is no 
network partition, thereby forfeiting Partition Tolerance 

 



Large-Scale Databases 

 When companies such as Google and Amazon were 
designing large-scale databases, 24/7 Availability was a key  
 A few minutes of downtime means lost revenue 

 

 When horizontally scaling databases to 1000s of machines, 
the likelihood of a node or a network failure  
increases tremendously  
 

 Therefore, in order to have strong guarantees on 
Availability and Partition Tolerance, they had to sacrifice 
“strict” Consistency (implied by the CAP theorem) 
 
 

 
 



Trading-Off Consistency 

 Maintaining consistency should balance between the 
strictness of consistency versus availability/scalability 
 Good-enough consistency depends on your application 

 

 
 

 
 



Trading-Off Consistency 

 Maintaining consistency should balance between the 
strictness of consistency versus availability/scalability 
 Good-enough consistency depends on your application 

 

 
 

 
 

Strict Consistency 

Generally hard to implement, 
and is inefficient 

Loose Consistency 

Easier to implement, 
and is efficient  



The BASE Properties 

 The CAP theorem proves that it is impossible to guarantee 
strict Consistency and Availability while being able to 
tolerate network partitions 
 

 This resulted in databases with relaxed ACID guarantees 
 

 In particular, such databases apply the BASE properties: 
 Basically Available: the system guarantees Availability 
 Soft-State: the state of the system may change over time 
 Eventual Consistency: the system will eventually  

become consistent 
 
 

 
 



Eventual Consistency 

 A database is termed as Eventually Consistent if: 
 All replicas will gradually become consistent in the 

absence of updates 
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Eventual Consistency:  
A Main Challenge 

 But, what if the client accesses the data from 
different replicas? 
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Protocols like Read Your Own Writes (RYOW) can be applied! 
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NoSQL Databases 

 To this end, a new class of databases emerged, which 
mainly follow the BASE properties 
 These were dubbed as NoSQL databases  
 E.g., Amazon’s Dynamo and Google’s Bigtable 

 
 Main characteristics of NoSQL databases include: 
 No strict schema requirements 
 No strict adherence to ACID properties  
 Consistency is traded in favor of Availability 

 
 



Types of NoSQL Databases 

 Here is a limited taxonomy of NoSQL databases: 
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Document Stores 

 Documents are stored in some standard format or 
encoding (e.g., XML, JSON, PDF or Office Documents) 
 These are typically referred to as Binary Large Objects 

(BLOBs) 
 

 Documents can be indexed 
 This allows document stores to outperform traditional 

file systems 
 

 E.g., MongoDB and CouchDB (both can be queried 
using MapReduce- next lecture) 
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 Here is a limited taxonomy of NoSQL databases: 
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Graph Databases 
 Data are represented as vertices and edges 

 
 
 
 
 
 
 
 
 

 Graph databases are powerful for graph-like queries (e.g., find 
the shortest path between two elements) 
 

 E.g., Neo4j and VertexDB 
 

 
 

Id: 1 
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Age: 18 

Id: 2 
Name: Bob 

Age: 22 

Id: 3 
Name: Chess 
Type: Group 



Types of NoSQL Databases 

 Here is a limited taxonomy of NoSQL databases: 
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Key-Value Stores 
 Keys are mapped to (possibly) more complex value 

(e.g., lists) 
 

 Keys can be stored in a hash table and can be 
distributed easily 
 

 Such stores typically support regular CRUD (create, 
read, update, and delete) operations 
 That is, no joins and aggregate functions 

 
 E.g., Amazon DynamoDB and Apache Cassandra 

 
 
 
 
 
 
 
 

 
 

 



Types of NoSQL Databases 

 Here is a limited taxonomy of NoSQL databases: 
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Columnar Databases 
 Columnar databases are a hybrid of RDBMSs and Key-

Value stores 
 Values are stored in groups of zero or more columns, but in 

Column-Order (as opposed to Row-Order) 
 
 
 
 
 

 Values are queried by matching keys 

 
 E.g., HBase and Vertica 

 
 
 
 
 
 

 
 

 

Alice 3 25 Bob 
4 19 Carol 0 
45 

Record 1 

Row-Order 

Alice 
3 25 

Bob 
4 

19 

Carol 
0 

45 

Column A 

Columnar (or Column-Order) 

Alice 
3 25 

Bob 
4 19 

Carol 

0 45 

Columnar with Locality Groups 

Column A = Group A 

Column Family {B, C} 



Summary 
 Data can be classified into 4 types, structured, 

unstructured, dynamic and static 
 

 Different data types usually entail different database 
designs 
 

 Databases can be scaled up or out 
 

 The 2PC protocol can be used to ensure strict 
consistency 
 

 Strict consistency limits scalability 
 
 

 



Summary (Cont’d) 
 The CAP theorem states that any distributed 

database with shared data can have at most two 
of the three desirable properties: 
 Consistency 
 Availability  
 Partition Tolerance 

 
 The CAP theorem lead to various designs of 

databases with relaxed ACID guarantees  
 



Summary (Cont’d) 
 NoSQL (or Not-Only-SQL) databases follow the BASE 

properties: 
 Basically Available 
 Soft-State 
 Eventual Consistency 

 

 NoSQL databases have different types: 
 Document Stores 
 Graph Databases 
 Key-Value Stores 
 Columnar Databases 



Next Class 

Hadoop = MapReduce + HDFS 
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