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Today...

= | ast Session:

= Transaction Management (finished)
= Non-Lock Based Protocols

= Recovery Management

" Today’s Session:
= Recovery Management (Cont’d)

= Announcements:

= Final Exam is on Sunday April 27", at 9:00AM in room 2051
(all materials are included- open book, open notes)

= PS5 (the “last” assignment) will be posted by tomorrow
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DBMS Layers

\ Queries /

Query Optimization
and Execution

Relational Operators

------------

Transaction
Manager

Lock
Manager

Files and Access Methods H
Recovery

Buffer Management Manager

Disk Space Management

Continue...
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> A Simple Transaction Abort

Checkpointing

> The ARIES Algorithm
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The Log

* The log is a file of records stored in stable storage

= Every log record is given a unique id called the Log
Sequence Number (LSN)

= |LSNs are assigned in a monotonically increasing order
(this is required by the ARIES recovery algorithm- later)

» Every page contains the LSN of the most recent log
record, which describes a change to this page

= This is called the pagelLSN



The Log (Cont’d)

" The most recent portion of the log, called the log tail,
is kept in main memory and forced periodically
to disk

Log records
flushed to disk

= The DBMS keeps track of the maximum LSN
flushed to disk so far

= This is called the flushedLSN

pageLSN ~
= As per the WAL protocol, before a
page is written to disk,

pagelLSN < flushedLSN lLlfizl\ld




When to Write Log Records?

" Alog record is written after:
= Updating a Page
=" An update log record is appended to the log tail

= The pagelLSN of the page is set to the LSN of the update
log record

= Committing a Transaction
= A commit log record is appended to the log tail

" The log tail is written to stable storage, up to and including the
commit log record

= Aborting a Transaction
= An abort log record is appended to the log tail
= An undo is initiated for this transaction



When to Write Log Records?

" Alog record is written after:

=" Ending (After Aborting or Committing) a Transaction:
= Additional steps are completed (/ater)
= An end log record is appended to the log tail

= Undoing an Update

= When the action (described by an update log record) is
undone, a compensation log record (CLR) is appended to
the log tail

= CLR describes the action taken to undo the action
recorded in the corresponding update log record



Log Records

"= The fields of a log record are usually as follows:

Can be used to redo and undo the changes!

! !

= Fields common to all log records: Additional Fields for only the Update Log Records

= Update Log Records

= Commit Log Records

= Abort Log Records

= End Log Records

= Compensation Log Records




Other Recovery-Related Structures

= |n addition to the log, the following two tables are maintained:
" The Transaction Table
= One entry E for each active transaction

= Efields are:
= Transaction ID
= Status, which can be “Progress”, “Committed” or “Aborted”
= JastLSN, which is the most recent log record for this transaction

= The Dirty Page Table
= One entry E’ for each dirty page in the buffer pool
= E’ fields are:

= Page ID

= recLSN, which is the LSN of the first log record that caused
the page to become dirty



An Example

P500
P600
Type pagelD Length Offset Before- After-
Image Image
Dirty Page Table T1000  Update  P500
T2000 Update P600 3 41 HIJ KLM
T2000 Update P500 3 20 GDE QRS
T1000 LOG

12000

Transaction Table



An Example

P500
P600

Type pagelD | Length Offset | Before- | After-
Image Image
Dirty Page Table T1000  Update  P500

T2000 Update P600 3 41 HIJ KLM
I T2000 Update P500 3 20 GDE QRS
T1000 Update P505 3 21 TUV WXY
T1000 LOG
T2000

Transaction Table



An Example

P500
P600
P505

Type pagelD | Length Offset | Before- | After-
Image Image

Dirty Page Tabl A T1000  Update P500
T2000  Update  P600 3 41 HIJ KLM
I T2000  Update  P500 3 20 GDE QRS
s T1000 Update  P505 3 21 TUV WXY
o it
T1000 LOG
T2000

Transaction Table
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A Simple Transaction Abort

" For now, let us consider an “explicit” abort of a
transaction T

" That is, no system crash is involved

= We want to “play back” the log in reverse order,
undoing T's updates

= Step 1: We get the lastLSN of T from the
Transaction table

= Step 2: We lock the corresponding data to be
undone (we can use strict 2PL)



A Simple Transaction Abort (Cont’d)

Step 3: before restoring an old value of a page, we
write a respective Compensation Log Record (CLR)
= CLR has one extra field, that is, undoNextLSN, which
points to the next LSN to undo

= That is, the prevLSN of the record we are
currently undoing

" CLRs are never undone (but they might be Redone)

Step 4: repeat steps 2 and 3 by following a chain of log
records backward via the prevLSN field

Last Step: at the end of UNDO, write an end log record



An Example

[ Let us assume T1000 is aborted! ]
P500
P600
P505

Type pagelD | Length Before- After-
Image Image

Dirty Page Tab 10 A T1000  Update P500
T2000  Update  P600 3 41 H1J KLM
I T2000  Update  P500 3 20 GDE QRS
50 | T1000  Update P505 3 21 TUV WXY
T1000 LOG
T2000

Transaction Table



An Example

P500 .
Transaction table
P600

P505

PagelD recLSN
-- [ Step 1: Get the lastLSN of T1000 from the ]

Type pagelD | Length Before- After-
Image Image

Dirty Page Tab 10 A T1000  Update P500
T2000  Update  P600 3 41 H1J KLM
I T2000  Update  P500 3 20 GDE QRS
50 | T1000  Update P505 3 21 TUV WXY
T1000 LOG
T2000

Transaction Table



An Example

P500 [ Step 2: Lock P505 ]
P600
P505

Type pagelD | Length Before- After-
Image Image

Dirty Page Tab 10 A T1000  Update P500
T2000  Update  P600 3 41 H1J KLM
I T2000  Update  P500 3 20 GDE QRS
s0 [{ T1000 Update PSos 3 21 Tw wxy !
e '
T1000 LOG
T2000

Transaction Table



An Example

P500 [ Step 3: Write CLR ]
P600
P505

Type pagelD | Length Before- After-
Image Image

Dirty Page Tab 10 A T1000  Update P500
T2000  Update  P600 3 41 H1J KLM
I T2000  Update  P500 3 20 GDE QRS
s0 [{ T1000 Update PSos 3 21 Tw wxy !
e '
T1000 LOG
T2000

Transaction Table



An Example

P500 [ Step 3: Write CLR ]
P600
P505

Type pagelD | Length Offset | Before- | After-
Image Image

Dirty Page Tab

10A A T1000 Update  P500

T2000 Update  P600 3 41 HIJ KLM

1 T1000 Update  P505 3 21 TUV WXY

o!
orio it [ A

T1000
12000

LOG

Transaction Table



An Example

P500 [ Step 4: Restore old value “TUV” ]
P600
P505

Type pagelD | Length Offset | Before- | After-
Image Image

Dirty Page Tab

10A A T1000 Update  P500

T2000 Update  P600 3 41 HIJ KLM

1 T1000 Update  P505 3 21 TUV WXY

o!
orio it [ A

T1000
12000

LOG

Transaction Table



An Example

P500
P600

P505 Type pagelD | Length Offset | Before- | After-
Image Image

Dirty Page Tab 10A A T1000  Update P500

|

Step 4: Restore old value “TUV” ]

T2000 Update  P600 3 41 HIJ KLM

.' T1000 Update  P505 3 21 TUV WXY
v

T1000
12000

LOG

Transaction Table



An Example

P500
P600 \

. Type pagelD Length Offset Before- After-
Dirty Page Table m--- image | _Image

10A A T1000 Update  P500

|

Step 4: Restore old value “TUV” ]

T2000 Update  P600 3 41 HIJ KLM

I T2000 Update  P500 3 20 GDE QRS

T1000 Update  P505

T1000
12000

Transaction Table



An Example

|

P500
P600 \

] Length Offset | Before- | After-
Dirty Page Table Image | Image

Step 5: Lock P500 ]

T1000 Update  P505

T1000
12000

Transaction Table



An Example

|

P500
P600 \

] Length Offset | Before- | After-
Dirty Page Table N T

Step 6: Write CLR ]

T1000
12000

Transaction Table




An Example

P500
P600 \

] Length Offset | Before- | After-
Dirty Page Table N T

|

Step 7: Restore old value “ABC” ]

T1000
12000

Transaction Table




An Example

P500 [ Step 7: Restore old value “ABC” ]
P600 N
. prevLSN Length Offset | Before- | After-
Dirty Page Table - e | e
1
10N T1000  Update P500 3 21 ABC DEF !
______________________________________________________ 4
T2000  Update P600 3 41 HIJ KLM
I T2000  Update P500 3 20 GDE QRS

50 T1000 Update  P505




An Example

|

P500
P600 ::\\

Step 7: Restore old value “ABC” ]

prevLSN | transID Type pagelD | Length Offset Before- After-

Dirty Page Table e | e
\. T1000 Update  P500 E
______________________________________________________ J

T2000  Update  P600 3 41 HIJ KLM

I T2000  Update  P500 3 20 GDE QRS

50 T1000 Update  P505




An Example

P500
P600

prevLSN Type pagelD | Length Offset Before- After-
Dirty Page Table e | e

A T1000 Update  P500

|

Step 8: Write an end log record ]

T2000 Update  P600 3 41 HIJ KLM

I T2000 Update  P500 3 20 GDE QRS

50 T1000 Update  P505




An Example

P500
P600

prevLSN Type pagelD | Length Offset Before- After-
Dirty Page Table e | e

A T1000 Update  P500

|

Step 8: Write an end log record ]

T2000 Update  P600 3 41 HIJ KLM

I T2000 Update  P500 3 20 GDE QRS

50 T1000 Update  P505
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> The ARIES Algorithm
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Checkpointing

* To reduce the amount of work to do during recovery, DBMSs
typically take checkpoints

= A checkpointis like a snapshot of a DBMS state

= A checkpoint can be taken by writing to the log:
= A begin_checkpoint record
* This indicates the start of the checkpoint
= An end_checkpoint record

= This indicates the end of the checkpoint
" |tincludes the contents of the Transaction and the Dirty Page tables

= A master record
= This contains the LSN of the begin_checkpoint record



Outline

> A Simple Transaction Abort

Checkpointing

v
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> The ARIES Algorithm




Recovering From a System Crash: ARIES

= We will study the ARIES algorithm for recovering from
system crashes

= ARIES is designed to work with a steal, no-force approach

= When the recovery manager is invoked after a crash, restart
proceeds in three phases:

= Analysis
= Redo
= Undo



Recovering From a System Crash: ARIES

= The Analysis Phase:

= |dentifies dirty pages in the buffer
pool and active transactions at the
time of the crash

= The Redo Phase:

= Redoes all actions

= The Undo Phase:

= Undoes the actions of transactions
that were active and did not commit

Oldest log Undo
rec. of Xact
active at crash

Smallest -
recLSN in - Redo

dirty page
table after
Analysis

Analysis

Last chkpt  — 1

CRASH



ARIES: The Analysis Phase

" The Analysis phase encompasses two main steps:

= Step 1: Reconstruct state (i.e., Dirty Page and
Transaction tables) via the end _checkpoint record,
after the most recent begin _checkpoint record

= Step 2: Scan the log in the forward direction, starting
after the checkpoint

" |f an end log record is encountered

=" Remove the corresponding transaction from the
Transaction table



ARIES: The Analysis Phase

" The Analysis phase encompasses two main steps:
= Step 2 (Cont’d):
= |f any other record is encountered

= Add the corresponding transaction to the
Transaction table (if it is not already there)

= Set lastLSN to the LSN of the record

= Set status to C for committed transactions, or to U (i.e.,
Undo), otherwise

=» When an update log record is encountered

= |f the recorded page, P, is not in the Dirty Page table

= Add P to the Dirty Page table and set its recLSN to the
LSN of the log record



ARIES: The Analysis Phase

= At the end of the Analysis phase:

= The Transaction table contains an “accurate” list of
all transactions that were active at the time of
the crash

* The Dirty Page table contains all pages that were
dirty at the time of the crash

* These pages may contain some pages that were
written to disk (why?)— Not a Problem!



ARIES: The Redo Phase

" During the Redo phase, ARIES reapplies the updates of
“all” transactions (i.e., committed and aborted)

* This paradigm is referred to as Repeating History

* The Redo phase scans forward until the end of the log,
and redoes every action unless:

= The affected page is not in the Dirty Page table

= The affected page is in the Dirty Page table, but its recLSN >
the current record’s LSN

————————————————————————————————————————————————————————————————————————————

\_____________________________________,_ _____________________________________

,/
4
s
,/
s’

Wouldn’t checking this be enough?




ARIES: The Redo Phase

" During the Redo phase, ARIES reapplies the updates of
“all” transactions (i.e., committed and aborted)

* This paradigm is referred to as Repeating History

* The Redo phase scans forward until the end of the log,
and redoes every action unless:
= The affected page is not in the Dirty Page table

= The affected page is in the Dirty Page table, but its recLSN >
the current record’s LSN

————————————————————————————————————————————————————————————————————————————

\_____________________________________y_ _____________________________________

YES, but it requires retrieving the page from the disk, thus made last!




ARIES: The Redo Phase

" |f the logged action must be redone:
" The logged action is reapplied

" The pagelLSN on the page is set to the LSN of the
redone log record

= No additional record is written at this time!



ARIES: The Undo Phase

* This phase will undo the actions of all transactions that
were active before the crash

" These transactions are referred to as loser transactions
and were identified by the Analysis phase

" The Undo phase:

= Considers the set of lastLSN values for all loser
transactions

= This is denoted as the ToUndo set

= Repeatedly chooses the largest (i.e., the most recent) LSN
value in ToUndo and processes it, until ToUndo is empty



ARIES: The Undo Phase

" |n particular, the Undo phase proceeds as follows:

Repeat:
Choose largest LSN among ToUndo
If this LSN is a CLR and undoNextLSN==NULL
Write an End record for this Xact
If this LSN is a CLR, and undoNextLSN != NULL
Add undonextLSN to ToUndo
Else this LSN is an update
Undo the update
Write a CLR
Add prevLSN to ToUndo
Until ToUndo is empty




An Example

LSN LOG
00,05 —-— begin_checkpoint, end_checkpoint
10 — update: T1 writes P5 <—_ . prevLSN

20 _ update T2 writes 3

undonextLSN

30 -— T1 abort
40,45 - CLR: Undo T1 LSN 10, T1 [End
50 —-— update: T3 writes P1
60 — update: T2 writes P5
$¢ CRASH, RESTART
70 — CLR: Undo T2 LSN 60
80,85 —— CLR: Undo T3 LSN 50, T3 end
¥ CRASH, RESTART
90 -~ CLR: Undo T2 LSN 20, T2 end

Q
<
14




Additional Crash Issues

= What happens if the system crashes while “Restart” is in the
Analysis phase?
= All the work done is lost!
" On a second Restart, the Analysis phase starts afresh

= What happens if the system crashes while “Restart” is in the
Redo phase?

= Restart starts again with the Analysis phase then the
Redo phase

= But, some of the changes made during Redo may have been
written to disk

" The update log records that were done the first time
around will not be redone a second time (why?)



Summary

Recovery Manager guarantees Atomicity & Durability

WAL is used to allow STEAL/NO-FORCE without
sacrificing correctness

LSNs identify log records; linked into backwards chains
per transaction (via prevLSN)

pagelSNs allow comparisons of data pages and
log records



Summary

= Checkpointing: A quick way to limit the amount of
log to scan on recovery

= Recovery works in 3 phases:

= Analysis: Forward from checkpoint
= Redo: Forward from oldest recLSN

= Undo: Backward from end to first LSN of oldest
transaction alive at crash

= Upon Undo, write CLRs

" Redo “repeats history”: Simplifies the logic!



Next Class
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