Database Applications (15-415)

DBMS Internals- Part XIV
Lecture 22, April 16, 2014

Mohammad Hammoud

,.L:_ggx_q g_[,._ug\,;}_ [Eg_ﬁ_ﬁu
Carnegie Mellon Un yQa



Today...

= | ast Session:

= Transaction Management (finished)
= Non-Lock Based Protocols

= Recovery Management

" Today’s Session:
= Recovery Management (Cont’d)

= Announcements:

= Final Exam is on Sunday April 27", at 9:00AM in room 2051
(all materials are included- open book, open notes)

= PS5 (the “last” assignment) will be posted by tomorrow

Carnegie Mellon University Qatar



DBMS Layers

\ Queries /

Query Optimization
and Execution

Relational Operators

------------

Transaction
Manager

Lock
Manager

Files and Access Methods H
Recovery

Buffer Management Manager

Disk Space Management

Continue...

Carnegie Mellon University Qatar



Outline

> A Simple Transaction Abort

Checkpointing

> The ARIES Algorithm

Carnegie Mellon University Qatar



The Log

* The log is a file of records stored in stable storage

= Every log record is given a unique id called the Log
Sequence Number (LSN)

= |LSNs are assigned in a monotonically increasing order
(this is required by the ARIES recovery algorithm- later)

» Every page contains the LSN of the most recent log
record, which describes a change to this page

= This is called the pagelLSN



The Log (Cont’d)

" The most recent portion of the log, called the log tail,
is kept in main memory and forced periodically
to disk

Log records
flushed to disk

= The DBMS keeps track of the maximum LSN
flushed to disk so far

= This is called the flushedLSN

pageLSN ~
= As per the WAL protocol, before a
page is written to disk,

pagelLSN < flushedLSN lLlfizl\ld




When to Write Log Records?

" Alog record is written after:
= Updating a Page
=" An update log record is appended to the log tail

= The pagelLSN of the page is set to the LSN of the update
log record

= Committing a Transaction
= A commit log record is appended to the log tail

" The log tail is written to stable storage, up to and including the
commit log record

= Aborting a Transaction
= An abort log record is appended to the log tail
= An undo is initiated for this transaction



When to Write Log Records?

" Alog record is written after:

=" Ending (After Aborting or Committing) a Transaction:
= Additional steps are completed (/ater)
= An end log record is appended to the log tail

= Undoing an Update

= When the action (described by an update log record) is
undone, a compensation log record (CLR) is appended to
the log tail

= CLR describes the action taken to undo the action
recorded in the corresponding update log record



Log Records

"= The fields of a log record are usually as follows:

Can be used to redo and undo the changes!

! !

= Fields common to all log records: Additional Fields for only the Update Log Records

= Update Log Records

= Commit Log Records

= Abort Log Records

= End Log Records

= Compensation Log Records




Other Recovery-Related Structures

= |n addition to the log, the following two tables are maintained:
" The Transaction Table
= One entry E for each active transaction

= Efields are:
= Transaction ID
= Status, which can be “Progress”, “Committed” or “Aborted”
= JastLSN, which is the most recent log record for this transaction

= The Dirty Page Table
= One entry E’ for each dirty page in the buffer pool
= E’ fields are:

= Page ID

= recLSN, which is the LSN of the first log record that caused
the page to become dirty



An Example

P500
P600
Type pagelD Length Offset Before- After-
Image Image
Dirty Page Table T1000  Update  P500
T2000 Update P600 3 41 HIJ KLM
T2000 Update P500 3 20 GDE QRS
T1000 LOG

12000

Transaction Table



An Example

P500
P600

Type pagelD | Length Offset | Before- | After-
Image Image
Dirty Page Table T1000  Update  P500

T2000 Update P600 3 41 HIJ KLM
I T2000 Update P500 3 20 GDE QRS
T1000 Update P505 3 21 TUV WXY
T1000 LOG
T2000

Transaction Table



An Example

P500
P600
P505

Type pagelD | Length Offset | Before- | After-
Image Image

Dirty Page Tabl A T1000  Update P500
T2000  Update  P600 3 41 HIJ KLM
I T2000  Update  P500 3 20 GDE QRS
s T1000 Update  P505 3 21 TUV WXY
o it
T1000 LOG
T2000

Transaction Table



Outline

> A Simple Transaction Abort

Checkpointing

> The ARIES Algorithm

Carnegie Mellon University Qatar



A Simple Transaction Abort

" For now, let us consider an “explicit” abort of a
transaction T

" That is, no system crash is involved

= We want to “play back” the log in reverse order,
undoing T's updates

= Step 1: We get the lastLSN of T from the
Transaction table

= Step 2: We lock the corresponding data to be
undone (we can use strict 2PL)



A Simple Transaction Abort (Cont’d)

Step 3: before restoring an old value of a page, we
write a respective Compensation Log Record (CLR)
= CLR has one extra field, that is, undoNextLSN, which
points to the next LSN to undo

= That is, the prevLSN of the record we are
currently undoing

" CLRs are never undone (but they might be Redone)

Step 4: repeat steps 2 and 3 by following a chain of log
records backward via the prevLSN field

Last Step: at the end of UNDO, write an end log record



An Example

[ Let us assume T1000 is aborted! ]
P500
P600
P505

Type pagelD | Length Before- After-
Image Image

Dirty Page Tab 10 A T1000  Update P500
T2000  Update  P600 3 41 H1J KLM
I T2000  Update  P500 3 20 GDE QRS
50 | T1000  Update P505 3 21 TUV WXY
T1000 LOG
T2000

Transaction Table



An Example

P500 .
Transaction table
P600

P505

PagelD recLSN
-- [ Step 1: Get the lastLSN of T1000 from the ]

Type pagelD | Length Before- After-
Image Image

Dirty Page Tab 10 A T1000  Update P500
T2000  Update  P600 3 41 H1J KLM
I T2000  Update  P500 3 20 GDE QRS
50 | T1000  Update P505 3 21 TUV WXY
T1000 LOG
T2000

Transaction Table



An Example

P500 [ Step 2: Lock P505 ]
P600
P505

Type pagelD | Length Before- After-
Image Image

Dirty Page Tab 10 A T1000  Update P500
T2000  Update  P600 3 41 H1J KLM
I T2000  Update  P500 3 20 GDE QRS
s0 [{ T1000 Update PSos 3 21 Tw wxy !
e '
T1000 LOG
T2000

Transaction Table



An Example

P500 [ Step 3: Write CLR ]
P600
P505

Type pagelD | Length Before- After-
Image Image

Dirty Page Tab 10 A T1000  Update P500
T2000  Update  P600 3 41 H1J KLM
I T2000  Update  P500 3 20 GDE QRS
s0 [{ T1000 Update PSos 3 21 Tw wxy !
e '
T1000 LOG
T2000

Transaction Table



An Example

P500 [ Step 3: Write CLR ]
P600
P505

Type pagelD | Length Offset | Before- | After-
Image Image

Dirty Page Tab

10A A T1000 Update  P500

T2000 Update  P600 3 41 HIJ KLM

1 T1000 Update  P505 3 21 TUV WXY

o!
orio it [ A

T1000
12000

LOG

Transaction Table



An Example

P500 [ Step 4: Restore old value “TUV” ]
P600
P505

Type pagelD | Length Offset | Before- | After-
Image Image

Dirty Page Tab

10A A T1000 Update  P500

T2000 Update  P600 3 41 HIJ KLM

1 T1000 Update  P505 3 21 TUV WXY

o!
orio it [ A

T1000
12000

LOG

Transaction Table



An Example

P500
P600

P505 Type pagelD | Length Offset | Before- | After-
Image Image

Dirty Page Tab 10A A T1000  Update P500

|

Step 4: Restore old value “TUV” ]

T2000 Update  P600 3 41 HIJ KLM

.' T1000 Update  P505 3 21 TUV WXY
v

T1000
12000

LOG

Transaction Table



An Example

P500
P600 \

. Type pagelD Length Offset Before- After-
Dirty Page Table m--- image | _Image

10A A T1000 Update  P500

|

Step 4: Restore old value “TUV” ]

T2000 Update  P600 3 41 HIJ KLM

I T2000 Update  P500 3 20 GDE QRS

T1000 Update  P505

T1000
12000

Transaction Table



An Example

|

P500
P600 \

] Length Offset | Before- | After-
Dirty Page Table Image | Image

Step 5: Lock P500 ]

T1000 Update  P505

T1000
12000

Transaction Table



An Example

|

P500
P600 \

] Length Offset | Before- | After-
Dirty Page Table N T

Step 6: Write CLR ]

T1000
12000

Transaction Table




An Example

P500
P600 \

] Length Offset | Before- | After-
Dirty Page Table N T

|

Step 7: Restore old value “ABC” ]

T1000
12000

Transaction Table




An Example

P500 [ Step 7: Restore old value “ABC” ]
P600 N
. prevLSN Length Offset | Before- | After-
Dirty Page Table - e | e
1
10N T1000  Update P500 3 21 ABC DEF !
______________________________________________________ 4
T2000  Update P600 3 41 HIJ KLM
I T2000  Update P500 3 20 GDE QRS

50 T1000 Update  P505




An Example

|

P500
P600 ::\\

Step 7: Restore old value “ABC” ]

prevLSN | transID Type pagelD | Length Offset Before- After-

Dirty Page Table e | e
\. T1000 Update  P500 E
______________________________________________________ J

T2000  Update  P600 3 41 HIJ KLM

I T2000  Update  P500 3 20 GDE QRS

50 T1000 Update  P505




An Example

P500
P600

prevLSN Type pagelD | Length Offset Before- After-
Dirty Page Table e | e

A T1000 Update  P500

|

Step 8: Write an end log record ]

T2000 Update  P600 3 41 HIJ KLM

I T2000 Update  P500 3 20 GDE QRS

50 T1000 Update  P505




An Example

P500
P600

prevLSN Type pagelD | Length Offset Before- After-
Dirty Page Table e | e

A T1000 Update  P500

|

Step 8: Write an end log record ]

T2000 Update  P600 3 41 HIJ KLM

I T2000 Update  P500 3 20 GDE QRS

50 T1000 Update  P505




Outline

> A Simple Transaction Abort

Checkpointing \/

> The ARIES Algorithm

Carnegie Mellon University Qatar



Checkpointing

* To reduce the amount of work to do during recovery, DBMSs
typically take checkpoints

= A checkpointis like a snapshot of a DBMS state

= A checkpoint can be taken by writing to the log:
= A begin_checkpoint record
* This indicates the start of the checkpoint
= An end_checkpoint record

= This indicates the end of the checkpoint
" |tincludes the contents of the Transaction and the Dirty Page tables

= A master record
= This contains the LSN of the begin_checkpoint record



Outline

> A Simple Transaction Abort

Checkpointing

v

Carnegie Mellon University Qatar

> The ARIES Algorithm




Recovering From a System Crash: ARIES

= We will study the ARIES algorithm for recovering from
system crashes

= ARIES is designed to work with a steal, no-force approach

= When the recovery manager is invoked after a crash, restart
proceeds in three phases:

= Analysis
= Redo
= Undo



Recovering From a System Crash: ARIES

= The Analysis Phase:

= |dentifies dirty pages in the buffer
pool and active transactions at the
time of the crash

= The Redo Phase:

= Redoes all actions

= The Undo Phase:

= Undoes the actions of transactions
that were active and did not commit

Oldest log Undo
rec. of Xact
active at crash

Smallest -
recLSN in - Redo

dirty page
table after
Analysis

Analysis

Last chkpt  — 1

CRASH



ARIES: The Analysis Phase

" The Analysis phase encompasses two main steps:

= Step 1: Reconstruct state (i.e., Dirty Page and
Transaction tables) via the end _checkpoint record,
after the most recent begin _checkpoint record

= Step 2: Scan the log in the forward direction, starting
after the checkpoint

" |f an end log record is encountered

=" Remove the corresponding transaction from the
Transaction table



ARIES: The Analysis Phase

" The Analysis phase encompasses two main steps:
= Step 2 (Cont’d):
= |f any other record is encountered

= Add the corresponding transaction to the
Transaction table (if it is not already there)

= Set lastLSN to the LSN of the record

= Set status to C for committed transactions, or to U (i.e.,
Undo), otherwise

=» When an update log record is encountered

= |f the recorded page, P, is not in the Dirty Page table

= Add P to the Dirty Page table and set its recLSN to the
LSN of the log record



ARIES: The Analysis Phase

= At the end of the Analysis phase:

= The Transaction table contains an “accurate” list of
all transactions that were active at the time of
the crash

* The Dirty Page table contains all pages that were
dirty at the time of the crash

* These pages may contain some pages that were
written to disk (why?)— Not a Problem!



ARIES: The Redo Phase

" During the Redo phase, ARIES reapplies the updates of
“all” transactions (i.e., committed and aborted)

* This paradigm is referred to as Repeating History

* The Redo phase scans forward until the end of the log,
and redoes every action unless:

= The affected page is not in the Dirty Page table

= The affected page is in the Dirty Page table, but its recLSN >
the current record’s LSN

————————————————————————————————————————————————————————————————————————————

\_____________________________________,_ _____________________________________

,/
4
s
,/
s’

Wouldn’t checking this be enough?




ARIES: The Redo Phase

" During the Redo phase, ARIES reapplies the updates of
“all” transactions (i.e., committed and aborted)

* This paradigm is referred to as Repeating History

* The Redo phase scans forward until the end of the log,
and redoes every action unless:
= The affected page is not in the Dirty Page table

= The affected page is in the Dirty Page table, but its recLSN >
the current record’s LSN

————————————————————————————————————————————————————————————————————————————

\_____________________________________y_ _____________________________________

YES, but it requires retrieving the page from the disk, thus made last!




ARIES: The Redo Phase

" |f the logged action must be redone:
" The logged action is reapplied

" The pagelLSN on the page is set to the LSN of the
redone log record

= No additional record is written at this time!



ARIES: The Undo Phase

* This phase will undo the actions of all transactions that
were active before the crash

" These transactions are referred to as loser transactions
and were identified by the Analysis phase

" The Undo phase:

= Considers the set of lastLSN values for all loser
transactions

= This is denoted as the ToUndo set

= Repeatedly chooses the largest (i.e., the most recent) LSN
value in ToUndo and processes it, until ToUndo is empty



ARIES: The Undo Phase

" |n particular, the Undo phase proceeds as follows:

Repeat:
Choose largest LSN among ToUndo
If this LSN is a CLR and undoNextLSN==NULL
Write an End record for this Xact
If this LSN is a CLR, and undoNextLSN != NULL
Add undonextLSN to ToUndo
Else this LSN is an update
Undo the update
Write a CLR
Add prevLSN to ToUndo
Until ToUndo is empty




An Example

LSN LOG
00,05 —-— begin_checkpoint, end_checkpoint
10 — update: T1 writes P5 <—_ . prevLSN

20 _ update T2 writes 3

undonextLSN

30 -— T1 abort
40,45 - CLR: Undo T1 LSN 10, T1 [End
50 —-— update: T3 writes P1
60 — update: T2 writes P5
$¢ CRASH, RESTART
70 — CLR: Undo T2 LSN 60
80,85 —— CLR: Undo T3 LSN 50, T3 end
¥ CRASH, RESTART
90 -~ CLR: Undo T2 LSN 20, T2 end

Q
<
14




Additional Crash Issues

= What happens if the system crashes while “Restart” is in the
Analysis phase?
= All the work done is lost!
" On a second Restart, the Analysis phase starts afresh

= What happens if the system crashes while “Restart” is in the
Redo phase?

= Restart starts again with the Analysis phase then the
Redo phase

= But, some of the changes made during Redo may have been
written to disk

" The update log records that were done the first time
around will not be redone a second time (why?)



Summary

Recovery Manager guarantees Atomicity & Durability

WAL is used to allow STEAL/NO-FORCE without
sacrificing correctness

LSNs identify log records; linked into backwards chains
per transaction (via prevLSN)

pagelSNs allow comparisons of data pages and
log records



Summary

= Checkpointing: A quick way to limit the amount of
log to scan on recovery

= Recovery works in 3 phases:

= Analysis: Forward from checkpoint
= Redo: Forward from oldest recLSN

= Undo: Backward from end to first LSN of oldest
transaction alive at crash

= Upon Undo, write CLRs

" Redo “repeats history”: Simplifies the logic!



Next Class

Carnegie Mellon University Qatar




	Database Applications (15-415)��DBMS Internals- Part XIV�Lecture 22, April 16, 2014
	Today…
	DBMS Layers
	Outline
	The Log
	The Log (Cont’d)
	When to Write Log Records?
	When to Write Log Records?
	Log Records
	Other Recovery-Related Structures
	An Example
	An Example
	An Example
	Outline
	A Simple Transaction Abort
	A Simple Transaction Abort (Cont’d)
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	Outline
	Checkpointing
	Outline
	Recovering From a System Crash: ARIES
	Recovering From a System Crash: ARIES
	ARIES: The Analysis Phase
	ARIES: The Analysis Phase
	ARIES: The Analysis Phase
	ARIES: The Redo Phase
	ARIES: The Redo Phase
	ARIES: The Redo Phase
	ARIES: The Undo Phase
	ARIES: The Undo Phase
	An Example
	Additional Crash Issues
	Summary
	Summary
	Next Class

