
Database Applications (15-415)

DBMS Internals- Part XIII
Lecture 21, April 14, 2014

Mohammad Hammoud

Today…
 Last Session:
 Transaction Management (Cont’d)

 Today’s Session:
 Transaction Management (finish)
 Non-Lock Based Protocols

 Recovery Management

 Announcements:
 PS4 is due tomorrow, April 15th, by midnight
 Please collect your quizzes tomorrow from my office

DBMS Layers

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Outline

Concurrency Control without Locking

The ACID Properties

The Steal, No-Force Approach

Logging and the WAL Protocol

The Log

Locking Protocols on the Scale

 What is the main advantage of locking protocols?
 They resolve RW, WR and WW conflicts

 What are the main disadvantages of locking protocols?
 They entail lock management overhead
 They require deadlock detection and resolution, or

prevention mechanisms
 They induce lock contention for heavily used objects

 If conflicts are very rare, the disadvantages of locking
protocols might limit performance unnecessarily!

Can we do better?

Optimistic Concurrency Control
(Kung & Robinson)

 We can allow all transactions to execute and only check
for conflicts before they commit
 Premise: Most transactions do not conflict with

each others

 In particular, transactions can proceed in 3 phases:
1. Read: read values and write results to private

workspaces
2. Validation: check for conflicts (abort in case of conflicts)
3. Write: make private results public

 This is known as “Optimistic” Concurrency Control!

The Validation Phase
 Each transaction Ti is assigned a numeric ID
 E.g., A timestamp TS(Ti)

 For each Ti, two sets of objects are maintained:
 ReadSet(Ti): Set of objects read by Ti
 WriteSet(Ti): Set of objects written by Ti

 The validation criterion checks whether the timestamp-ordering

of transactions is equivalent to a serial order

 In particular, for every pair of transactions Ti and Tj such that
TS(Ti) < TS(Tj), three validation conditions must hold (see next)

The Validation Phase: Condition 1

 For all i and j such that Ti < Tj, the validation phase
checks that Ti completes before Tj begins

Ti
Tj R V W

R V W

 Tj can see some of Ti’s changes, but they execute entirely in
serial order with respect to each other

 This ensure no RW, WR and WW conflicts!

The Validation Phase: Condition 2

 For all i and j such that Ti < Tj, the validation phase
checks that:
 Ti completes before Tj begins its Write phase
 And WriteSet(Ti) ∩ ReadSet(Tj) is empty

Ti

Tj
R V W

R V W Tj can read objects which will be
written by Ti; hence, to avoid RW

conflicts, WriteSet(Ti) ∩
ReadSet(Tj) should be empty!

W(X)

R(X)

W(X)

R(X)

The Validation Phase: Condition 2

 For all i and j such that Ti < Tj, the validation phase
checks that:
 Ti completes before Tj begins its Write phase
 And WriteSet(Ti) ∩ ReadSet(Tj) is empty

Ti

Tj
R V W

R V W

Tj can read objects which have been temporarily written by Ti; hence, to
avoid WR conflicts, WriteSet(Ti) ∩ ReadSet(Tj) should be empty!

W(X)

R(X)

W(X)

The Validation Phase: Condition 2

 For all i and j such that Ti < Tj, the validation phase
checks that:
 Ti completes before Tj begins its Write phase
 And WriteSet(Ti) ∩ ReadSet(Tj) is empty

Ti

Tj
R V W

R V W

No WW conflicts!

The Validation Phase: Condition 2

 For all i and j such that Ti < Tj, the validation phase
checks that:
 Ti completes before Tj begins its Write phase
 And WriteSet(Ti) ∩ ReadSet(Tj) is empty

Ti

Tj
R V W

R V W

Therefore, Condition 2 ensures that no RW, WR or WW will arise!

The Validation Phase: Condition 3

 For all i and j such that Ti < Tj, the validation phase
checks that:
 Ti completes its Read phase before Tj does
 And WriteSet(Ti) ∩ ReadSet(Tj) is empty

Ti

Tj
R V W

R V W
Tj can read objects which will be written by Ti; hence, to avoid WR conflicts,

WriteSet(Ti) ∩ ReadSet(Tj) should be empty!

W(X)

R(X)

Comparable to a
DIRTY READ!

The Validation Phase: Condition 3

 For all i and j such that Ti < Tj, the validation phase
checks that:
 Ti completes its Read phase before Tj does
 And WriteSet(Ti) ∩ ReadSet(Tj) is empty

Ti

Tj
R V W

R V W

W(X) Not Possible!

R(X) R(X)

An unrepeatable read is not an option; hence, no RW conflicts!

The Validation Phase: Condition 3

 For all i and j such that Ti < Tj, the validation phase
checks that:
 Ti completes its Read phase before Tj does
 And WriteSet(Ti) ∩ ReadSet(Tj) is empty

Ti

Tj
R V W

R V W

W(X)

W(X)

Not a Problem!

The Validation Phase: Condition 3

 For all i and j such that Ti < Tj, the validation phase
checks that:
 Ti completes its Read phase before Tj does
 And WriteSet(Ti) ∩ ReadSet(Tj) is empty

Ti

Tj
R V W

R V W

W(X)

W(X)

WW Conflict!

The Validation Phase: Condition 3

 For all i and j such that Ti < Tj, the validation phase
checks that:
 Ti completes its Read phase before Tj does
 And WriteSet(Ti) ∩ ReadSet(Tj) is empty

Ti

Tj
R V W

R V W

W(X)

W(X)

WW Conflict!

Ti can write objects which have been written by Tj; hence, to avoid WW conflicts,
WriteSet(Ti) ∩ WriteSet(Tj) should be empty!

The Validation Phase: Condition 3

 For all i and j such that Ti < Tj, the validation phase
checks that:
 Ti completes its Read phase before Tj does
 And WriteSet(Ti) ∩ ReadSet(Tj) is empty
 And WriteSet(Ti) ∩ WriteSet(Tj) is empty
 Ti

Tj
R V W

R V W
Ti can write objects which have been written by Tj; hence, to avoid WW conflicts,

WriteSet(Ti) ∩ WriteSet(Tj) should be empty!

The Validation Phase: Condition 3

 For all i and j such that Ti < Tj, the validation phase
checks that:
 Ti completes its Read phase before Tj does
 And WriteSet(Ti) ∩ ReadSet(Tj) is empty
 And WriteSet(Ti) ∩ WriteSet(Tj) is empty
 Ti

Tj
R V W

R V W

Therefore, Condition 3 ensures that no RW, WR or WW will arise!

Summary

 There are several lock-based concurrency control
schemes (e.g., 2PL & Strict 2PL)
 The lock manager keeps track of the locks issued

 Deadlocks can arise, but they can either be

detected and resolved, or initially prevented

 With dynamic databases, naïve locking strategies
may expose the phantom problem
 Resolving this problem has to do with the

locking granularity

Summary

 Index locking is common, and affects
performance significantly
 Needed when accessing records via an index
 Needed for locking logical sets of records (index

locking/predicate locking)

 Tree-structured Indexes:
 A straightforward use of 2PL is very inefficient
 Bayer-Schkolnick illustrates a high potential for

performance improvement

Summary

 “Pessimistic” Concurrency Control (CC) might
limit performance in an environment where
reads are common and writes are rare
 “Optimistic” CC aims at minimizing CC overheads in

these kinds of environments

 Most real systems, however, use pessimistic CC

DBMS Layers

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Outline

Concurrency Control without Locking

The ACID Properties

The Steal, No-Force Approach

Logging and the WAL Protocol

The Log

The ACID Properties
 Four properties must be ensured in the face of

concurrent accesses and system failures:
 Atomicity: Either all actions of a transaction are carried

out or none at all
 Consistency: Each transaction (run by itself with no

concurrent execution) must preserve the consistency of
the database
 Isolation: Execution of one transaction is isolated (or

protected) from the effects of other concurrently running
transactions
 Durability: If a transaction commits, its effects persist

(even of the system crashes before all its changes are
reflected on disk)

The ACID Properties
 Four properties must be ensured in the face of

concurrent accesses and system failures:
 Atomicity: Either all actions of a transaction are carried

out or non at all
 Consistency: Each transaction (run by itself with no

concurrent execution) must preserve the consistency of
the database
 Isolation: Execution of one transaction is isolated (or

protected) from the effects of other concurrently running
transactions
 Durability: If a transaction commits, its effects persist

(even of the system crashes before all its changes are
reflected on disk)

Atomicity: The Responsibility of the Recovery Manager

Consistency: The Responsibility of the User

Isolation: The Responsibility of the Transaction Manager

Durability: The Responsibility of the Recovery Manager

?

?

Outline

Concurrency Control without Locking

The ACID Properties

The Steal, No-Force Approach

Logging and the WAL Protocol

The Log

Ensuring Atomicity and Durability
 How can the recovery manager ensure atomicity and

durability (in case of a failure)?
 It can ensure atomicity by undoing the actions of transactions

that did not commit
 It can ensure durability by redoing (all) the actions of

committed transactions

Crash!
T1
T2
T3
T4
T5

 Desired Behavior after the
system restarts:
 T1, T2 & T3 should

be durable
 T4 & T5 should

be rolled back

Stealing Frames and Forcing Pages
 To realize what it takes to implement a recovery manager, it

is necessary to understand what happens during
normal execution
 Can the changes made to an object O in the buffer pool by a

transaction T be written to disk before T commits?
 Yes, if another transaction steals O’s frame (a steal approach is

said to be in place)
 No, if stealing is not allowed (a no-steal approach is said to be

in place)
 When T commits, must we ensure that all its changes are

immediately forced to disk?
 Yes, if a force approach is used
 No, if a no-force approach is used

Steal vs. No-Steal and Force vs. No-Force
Approaches

 What if a no-steal approach is used?
 We do not have to undo the changes of an aborted

transaction (+)
 But this assumes that all pages modified by ongoing

transactions can be accommodated in the buffer pool (-)

 What if a force approach is used?
 We do not have to redo the changes of a committed

transaction (+)
 But this results in excessive page I/O costs (e.g., when a

highly used page is updated in succession by 20 transactions,
it would be written to disk 20 times!) (-)

Steal vs. No-Steal and Force vs. No-Force
Approaches (Cont’d)

 We indeed have four alternatives that we can employ:

 Most DBMSs use a steal, no-force approach

No-Steal Steal
Force Trivial, but undesired High I/O cost, but modified

pages need not fit in the
buffer pool

No-Force Low I/O cost, but modified
pages need to fit in the
buffer pool

Low I/O cost, and modified
pages need not fit in the
buffer pool

No-Steal Steal
Force Trivial, but undesired High I/O cost, but modified

pages need not fit in the
buffer pool

No-Force Low I/O cost, but modified
pages need to fit in the
buffer pool

Low I/O cost, and modified
pages need not fit in the
buffer pool

No-Steal Steal
Force Trivial, but undesired High I/O cost, but modified

pages need not fit in the
buffer pool

No-Force Low I/O cost, but modified
pages need to fit in the
buffer pool

Low I/O cost, and modified
pages need not fit in the
buffer pool

No-Steal Steal
Force Trivial, but undesired High I/O cost, but modified

pages need not fit in the
buffer pool

No-Force Low I/O cost, but modified
pages need to fit in the
buffer pool

Low I/O cost, and modified
pages need not fit in the
buffer pool

No-Steal Steal
Force Trivial, but undesired High I/O cost, but modified

pages need not fit in the
buffer pool

No-Force Low I/O cost, but modified
pages need to fit in the
buffer pool

Low I/O cost, and modified
pages need not fit in the
buffer pool

Outline

Concurrency Control without Locking

The ACID Properties

The Steal, No-Force Approach

Logging and the WAL Protocol

The Log

Logging and the WAL Property

 In order to recover from failures, the recovery manager
maintains a log of all modifications to the database on
stable storage (which should survive crashes)

 After a failure, the DBMS “replays” the log to:
 Redo committed transactions
 Undo uncommitted transactions

 Caveat: A log record describing a change must be written

to stable storage before the change is made
 This is referred to as the Write-Ahead Log (WAL) property

The WAL Protocol

 WAL is the fundamental rule that ensures that a record of
every change to the database is available after a crash

 What if a transaction made a change, committed, then a
crash occurred (i.e., no log is kept “before” the crash)?
 The no-force approach entails that this change may not have

been written to disk before the crash
 Without a record of this change, there would be no way to

ensure that the committed transaction survives the crash
 Hence, durability cannot be guaranteed!

To guarantee durability, a record for every change must be written to
stable storage before the change is made

The WAL Protocol (Cont’d)

 WAL is the fundamental rule that ensures that a record of
every change to the database is available after a crash

 What if a transaction made a change, was progressing, and
a crash occurred?
 The steal approach entails that this change may have been

written to disk before the crash
 Without a record of this change, there would be no way to

ensure that the transaction can be rolled back (i.e., its
effects would be unseen)

 Hence, atomicity cannot be guaranteed!
To guarantee atomicity, a record for every change must be written to

stable storage before the change is made

Outline

Concurrency Control without Locking

The ACID Properties

The Steal, No-Force Approach

Logging and the WAL Protocol

The Log

The Log

 The log is a file of records stored in stable storage

 Every log record is given a unique id called the Log
Sequence Number (LSN)
 LSNs are assigned in a monotonically increasing order

(this is required by the ARIES recovery algorithm- later)

 Every page contains the LSN of the most recent log
record, which describes a change to this page
 This is called the pageLSN

The Log (Cont’d)

 The most recent portion of the log, called the log tail,
is kept in main memory and forced periodically
to disk

 The DBMS keeps track of the maximum LSN
flushed to disk so far
 This is called the flushedLSN

 As per the WAL protocol, before a

page is written to disk,
pageLSN ≤ flushedLSN

pageLSN

Log records
flushed to disk

“Log tail”
 in RAM

When to Write Log Records?
 A log record is written after:
 Updating a Page
 An update log record is appended to the log tail
 The pageLSN of the page is set to the LSN of the update

log record

 Committing a Transaction
 A commit log record is appended to the log tail
 The log tail is written to stable storage, up to and including the

commit log record

 Aborting a Transaction
 An abort log record is appended to the log tail
 An undo is initiated for this transaction

When to Write Log Records?

 A log record is written after:
 Ending (After Aborting or Committing) a Transaction:
 Additional steps are completed (later)
 An end log record is appended to the log tail

 Undoing an Update
 When the action (described by an update log record) is

undone, a compensation log record (CLR) is appended to
the log tail
 CLR describes the action taken to undo the action

recorded in the corresponding update log record

Log Records

prevLSN transID Type pageID Length Offset Before-Image After-Image

 The fields of a log record are usually as follows:

 Fields common to all log records:
 Update Log Records
 Commit Log Records
 Abort Log Records
 End Log Records
 Compensation Log Records

Additional Fields for only the Update Log Records

Can be used to redo and undo the changes!

Other Recovery-Related Structures
 In addition to the log, the following two tables are maintained:
 The Transaction Table
 One entry E for each active transaction
 E fields are:
 Transaction ID
 Status, which can be “Progress”, “Committed” or “Aborted”
 lastLSN, which is the most recent log record for this transaction

 The Dirty Page Table
 One entry E’ for each dirty page in the buffer pool
 E’ fields are:
 Page ID
 recLSN, which is the LSN of the first log record that caused

the page to become dirty

An Example

prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY

PageID recLSN

P500

P600

P505

Dirty Page Table

TransID lastLSN

T1000

T2000

Transaction Table

LOG

prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY
TransID lastLSN

T1000

T2000

PageID recLSN

P500

P600

P505 prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY
TransID lastLSN

T1000

T2000

PageID recLSN

P500

P600

P505 prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY

An Example

prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY

PageID recLSN

P500

P600

P505

Dirty Page Table

TransID lastLSN

T1000

T2000

Transaction Table

LOG

prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY
TransID lastLSN

T1000

T2000

PageID recLSN

P500

P600

P505 prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY
TransID lastLSN

T1000

T2000

PageID recLSN

P500

P600

P505 prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY

prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY

An Example

prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY

PageID recLSN

P500

P600

P505

Dirty Page Table

TransID lastLSN

T1000

T2000

Transaction Table

LOG

prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY
TransID lastLSN

T1000

T2000

PageID recLSN

P500

P600

P505 prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY
TransID lastLSN

T1000

T2000

PageID recLSN

P500

P600

P505 prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY

prevLSN transID Type pageID Length Offset Before-
Image

After-
Image

T1000 Update P500 3 21 ABC DEF

T2000 Update P600 3 41 HIJ KLM

T2000 Update P500 3 20 GDE QRS

T1000 Update P505 3 21 TUV WXY

PageID recLSN

P500

P600

P505

Next Class

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Continue…

	Database Applications (15-415)��DBMS Internals- Part XIII�Lecture 21, April 14, 2014
	Today…
	DBMS Layers
	Outline
	Locking Protocols on the Scale
	Optimistic Concurrency Control �(Kung & Robinson)
	The Validation Phase
	The Validation Phase: Condition 1
	The Validation Phase: Condition 2
	The Validation Phase: Condition 2
	The Validation Phase: Condition 2
	The Validation Phase: Condition 2
	The Validation Phase: Condition 3
	The Validation Phase: Condition 3
	The Validation Phase: Condition 3
	The Validation Phase: Condition 3
	The Validation Phase: Condition 3
	The Validation Phase: Condition 3
	The Validation Phase: Condition 3
	Summary
	Summary
	Summary
	DBMS Layers
	Outline
	The ACID Properties
	The ACID Properties
	Outline
	Ensuring Atomicity and Durability
	Stealing Frames and Forcing Pages
	Steal vs. No-Steal and Force vs. No-Force Approaches
	Steal vs. No-Steal and Force vs. No-Force Approaches (Cont’d)
	Outline
	Logging and the WAL Property
	The WAL Protocol
	The WAL Protocol (Cont’d)
	Outline
	The Log
	The Log (Cont’d)
	When to Write Log Records?
	When to Write Log Records?
	Log Records
	Other Recovery-Related Structures
	An Example
	An Example
	An Example
	Next Class

