
Database Applications (15-415)

DBMS Internals- Part XII
Lecture 20, April 9, 2014

Mohammad Hammoud

Today…
 Last Two Sessions:
 DBMS Internals- Part XI
 Transaction Management

 Student Presentations of P3

 Today’s Session:
 Transaction Management (Cont’d)

 Announcement:
 PS4 is due on Tuesday, April 15th

DBMS Layers

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Continue…

Outline

Lock Conversions

Dealing with Deadlocks

Dynamic Databases and the Phantom
Problem

Concurrency Control in B+ Trees

Lock Conversions

 A transaction may need to change the lock it
already acquires on an object
 From Shared to Exclusive
 This is referred to as lock upgrade

 From Exclusive to Shared
 This is referred to as lock downgrade

 For example, an SQL update statement might

acquire a Shared lock on each row, R, in a table
and if R satisfies the condition (in the WHERE
clause), an Exclusive lock must be obtained for R

Lock Upgrades
 A lock upgrade request from a transaction T on object O

must be handled specially by:
 Granting an Exclusive lock to T immediately if no other

transaction holds a Shared lock on O
 Otherwise, queuing T at the front of O’s queue

(i.e., T is favored)

 T is favored because it already holds a Shared lock on O
 Queuing T in front of another transaction T’ that holds no lock

on O, but requested an Exclusive lock on O averts a deadlock!
 However, if T and T’ hold a Shared lock on O, and both

request upgrades to an Exclusive lock, a deadlock will
arise regardless!

Lock Downgrades
 Lock upgrades can be entirely avoided by obtaining

Exclusive locks initially, and downgrade them to Shared
locks once needed

 Would this violate any 2PL requirement?
 On the surface yes; since the transaction (say, T) may

need to upgrade later
 This is, however, a special case as T conservatively

obtained an Exclusive lock, and did nothing but read the
object that it downgraded
 2PL can be safely extended to allow lock downgrades in

the growing phase, provided that the transaction has not
modified the object
 This might reduce concurrency (due to obtaining some

unnecessary Exclusive locks) but improve throughput
(due to reducing deadlocks)!

Outline

Lock Conversions

Dealing with Deadlocks

Dynamic Databases and the Phantom
Problem

Concurrency Control in B+ Trees

Deadlock Detection
 The lock manager maintains a structure called a waits-for

graph to periodically detect deadlocks

 In a waits-for graph:
 The nodes correspond to active transactions
 There is an edge from Ti to Tj if and only if Ti is waiting for Tj

to release a lock

 The lock manager adds and removes edges to and from a
waits-for graph when it queues and grants lock requests,
respectively

 A deadlock is detected when a cycle in the waits-for graph
is found

Deadlock Detection (Cont’d)

 The following schedule is free of deadlocks:

T1 T2

S(A)
R(A)

S(B)

X(B)
W(B)

X(C)

S(C)
R(C)

X(B)

T3 T4
T1 T2

T4 T3

*The nodes correspond to active transactions and there is an edge from Ti to Tj if and only
if Ti is waiting for Tj to release a lock

The Corresponding Waits-For Graph* A schedule without a deadlock

No cycles; hence, no deadlocks!

Deadlock Detection (Cont’d)

 The following schedule is NOT free of deadlocks:

T1 T2

S(A)
R(A)

S(B)

X(B)
W(B)

X(C)

S(C)
R(C)

X(A)

X(B)

T3 T4
T1 T2

T4 T3

*The nodes correspond to active transactions and there is an edge from Ti to Tj if and only
if Ti is waiting for Tj to release a lock

The Corresponding Waits-For Graph* A schedule with a deadlock

Deadlock Detection (Cont’d)

 The following schedule is NOT free of deadlocks:

T1 T2

S(A)
R(A)

S(B)

X(B)
W(B)

X(C)

S(C)
R(C)

X(A)

X(B)

T3 T4
T1 T2

T4 T3

*The nodes correspond to active transactions and there is an edge from Ti to Tj if and only
if Ti is waiting for Tj to release a lock

The Corresponding Waits-For Graph* A schedule with a deadlock

Cycle detected; hence, a deadlock!

Resolving Deadlocks
 A deadlock is resolved by aborting a transaction that is

on a cycle and releasing its locks
 This allows some of the waiting transactions to proceed

 The choice of which transaction to abort can be made

using different criteria:
 The one with the fewest locks
 Or the one that has done the least work
 Or the one that is farthest from completion (more accurate)

 Caveat: a transaction that was aborted in the past,
should be favored subsequently and not aborted upon
a deadlock detection!

Deadlock Prevention

 Studies indicate that deadlocks are relatively infrequent
and detection-based schemes work well in practice

 However, if there is a high level of contention for locks,
prevention-based schemes could perform better

 Deadlocks can be averted by giving each transaction a
priority and ensuring that lower-priority transactions are
not allowed to wait for higher-priority ones
(or vice versa)

Deadlock Prevention (Cont’d)

 One way to assign priorities is to give each
transaction a timestamp when it is started
 Thus, the lower the timestamp, the higher is the

transaction’s priority

 If a transaction Ti requests a lock and a transaction
Tj holds a conflicting lock, the lock manager can
use one of the following policies:
 Wound-Wait: If Ti has higher priority, Tj is aborted;

otherwise, Ti waits
 Wait-Die: If Ti has higher priority, it is allowed to wait;

otherwise, it is aborted

Reissuing Timestamps
 A subtle point is that we must ensure that no

transaction is perennially aborted because it never had
a sufficiently high priority

 To avoid that, when a transaction is aborted and
restarted, it should be given the same timestamp it
had originally
 This policy is referred to as reissuing timestamps

 Reissuing timestamps ensures that each transaction

will eventually become the oldest and accordingly get
all the locks it requires!

Outline

Lock Conversions

Dealing with Deadlocks

Dynamic Databases and the Phantom
Problem

Concurrency Control in B+ Trees

Dynamic Databases
 Thus far, we have assumed static databases in a sense

that they do not grow and shrink

 We now relax that condition and assume dynamic
databases (i.e., databases that grow and shrink)

 To study locking protocols for dynamic databases,
we consider the following:
 A Sailors relation S
 A transaction T1 which scans S to find the oldest Sailor for

each of the rating levels 1 and 2
 A transaction T2 which inserts a new Sailor with rating 1

and age 96

A Possible Scenario
 Assume a scenario whereby the actions of T1 and T2 are

interleaved as follows:
 T1 identifies all pages containing Sailors with rating 1 (say,

pages A and B)
 T1 finds the age of the oldest Sailor with rating 1 (say, 71)
 T2 inserts a new Sailor with rating 1 and age 96 (perhaps

into page C which does not contain any Sailor with rating 1)
 T2 locates the page containing the oldest Sailor with rating 2

(say, page D) and deletes this Sailor (whose age is, say, 80)
 T2 commits
 T1 identifies all pages containing Sailors with rating 2 (say

pages D and E), and finds the age of the oldest such Sailor
(which is, say, 63)

 T1 commits

A Possible Scenario (Cont’d)

 We can apply strict 2PL to the given interleaved actions
of T1 and T2 as follows (S = Shared; X = Exclusive):

T1 T2
R(A)
R(B)

R(D)
R(E)
Commit

R(C)
W(C)
R(D)
W(D)
Commit

T1 T2
S(A)
R(A)
S(B)
R(B)

S(D)
R(D)
S(E)
R(E)
Commit

E(C)
R(C)
W(C)
E(D)
R(D)
W(D)
Commit

A Possible Scenario (Cont’d)

 We can apply strict 2PL to the given interleaved actions
of T1 and T2 as follows (S = Shared; X = Exclusive):

T1 T2
R(A)
R(B)

R(D)
R(E)
Commit

R(C)
W(C)
R(D)
W(D)
Commit

T1 T2
S(A)
R(A)
S(B)
R(B)

S(D)
R(D)
S(E)
R(E)
Commit

E(C)
R(C)
W(C)
E(D)
R(D)
W(D)
Commit

A tuple with
rating 1 and
age 71 is
returned A tuple with rating 1

and age 96 is inserted

A tuple with rating 2
and age 80 is deleted

A tuple with
rating 2 and
age 63 is
returned

A Possible Scenario (Cont’d)

 One possible serial execution of T1 and T2 is as follows
(S = Shared; X = Exclusive):

T1 T2
R(A)
R(B)
R(D)
R(E)
Commit

R(C)
W(C)
R(D)
W(D)
Commit

T1 T2
S(A)
R(A)
S(B)
R(B)
S(D)
R(D)
S(E)
R(E)
Commit

E(C)
R(C)
W(C)
E(D)
R(D)
W(D)
Commit

A tuple with
rating 1 and
age 71 is
returned

A tuple with rating 1
and age 96 is inserted

A tuple with rating 2
and age 80 is deleted

A tuple with
rating 2 and
age 80 is
returned

A Possible Scenario (Cont’d)

 Another possible serial execution of T1 and T2 is as
follows (S = Shared; X = Exclusive):

T1 T2

R(A)
R(B)
R(D)
R(E)
Commit

R(C)
W(C)
R(D)
W(D)
Commit

T1 T2

S(A)
R(A)
S(B)
R(B)
S(C)
R(C)
S(D)
R(D)
S(E)
R(E)
Commit

E(C)
R(C)
W(C)
E(D)
R(D)
W(D)
Commit A tuple with

rating 1 and
age 96 is
returned

A tuple with rating 1
and age 96 is inserted

A tuple with rating 2
and age 80 is deleted

A tuple with
rating 2 and
age 63 is
returned

A Possible Scenario: Revisit

 We can apply strict 2PL to the given interleaved actions
of T1 and T2 as follows (S = Shared; X = Exclusive):

T1 T2
R(A)
R(B)

R(D)
R(E)
Commit

R(C)
W(C)
R(D)
W(D)
Commit

T1 T2
S(A)
R(A)
S(B)
R(B)

S(D)
R(D)
S(E)
R(E)
Commit

E(C)
R(C)
W(C)
E(D)
R(D)
W(D)
Commit

A tuple with
rating 1 and
age 71 is
returned A tuple with rating 1

and age 96 is inserted

A tuple with rating 2
and age 80 is deleted

A tuple with
rating 2 and
age 63 is
returned

This schedule is not
identical to any serial

execution of T1 and T2!

The Phantom Problem
 The problem is that T1 assumes that it has locked “all” the

pages which contain Sailors records with rating 1

 This assumption is violated when T2 inserts a new Sailor
record with rating 1 on a different page

 Hence, locking pages at any given time does not prevent
new phantom records from being added on other pages!
 This is commonly known as the “Phantom Problem”

 The Phantom Problem is caused, not because of a flaw in

the Strict 2PL protocol, but because of T1’s unrealistic
assumptions

How Can We Solve the
Phantom Problem?

 If there is no index on rating and all pages in Sailors
must be scanned, T1 should somehow ensure that no
new pages are inserted to the Sailors relation
 This has to do with the locking granularity

 If there is an index on rating, T1 can lock the index
entries and the data pages which involve the targeted
ratings, and accordingly prevent new insertions
 This technique is known as index locking

Outline

Lock Conversions

Dealing with Deadlocks

Dynamic Databases and the Phantom
Problem

Concurrency Control in B+ Trees

Concurrency Control in B+ Trees

 We focus on applying concurrency control on B+ trees for:
 Searches
 Insertions/deletions

 Three observations provide the necessary insights to apply

a locking protocol for B+ trees:
1. The higher levels of a B+ tree only direct searches
2. Searches never go back up a B+ tree when they proceed

along paths to desired leafs
3. Insertions/deletions can cause splits/merges, which might

propagate all the way up, from leafs to the root of a B+ tree

A Locking Strategy for Searches
 A search should obtain Shared locks on nodes, starting at the root

and proceeding along the path to the desired leaf

 Since searches never go back up the tree, a lock on a node can be
released as soon as a lock on a child node is obtained

 Example: Search for data entry 38*

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23

Obtain a Shared Lock

A Locking Strategy for Searches
 A search should obtain Shared locks on nodes, starting at the root

and proceeding along the path to the desired leaf

 Since searches never go back up the tree, a lock on a node can be
released as soon as a lock on a child node is obtained

 Example: Search for data entry 38*

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23

Obtain a Shared Lock

A Locking Strategy for Searches
 A search should obtain Shared locks on nodes, starting at the root

and proceeding along the path to the desired leaf

 Since searches never go back up the tree, a lock on a node can be
released as soon as a lock on a child node is obtained

 Example: Search for data entry 38*

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23

Release the Shared Lock

Obtain a Shared Lock

A Locking Strategy for Searches
 A search should obtain Shared locks on nodes, starting at the root

and proceeding along the path to the desired leaf

 Since searches never go back up the tree, a lock on a node can be
released as soon as a lock on a child node is obtained

 Example: Search for data entry 38*

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23
Obtain a

Shared Lock

A Locking Strategy for Searches
 A search should obtain Shared locks on nodes, starting at the root

and proceeding along the path to the desired leaf

 Since searches never go back up the tree, a lock on a node can be
released as soon as a lock on a child node is obtained

 Example: Search for data entry 38*

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23
Obtain a

Shared Lock

Release the Shared Lock

A Locking Strategy for Searches
 A search should obtain Shared locks on nodes, starting at the root

and proceeding along the path to the desired leaf

 Since searches never go back up the tree, a lock on a node can be
released as soon as a lock on a child node is obtained

 Example: Search for data entry 38*

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23 Obtain a
Shared Lock

A Locking Strategy for Searches
 A search should obtain Shared locks on nodes, starting at the root

and proceeding along the path to the desired leaf

 Since searches never go back up the tree, a lock on a node can be
released as soon as a lock on a child node is obtained

 Example: Search for data entry 38*

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23 Obtain a
Shared Lock

Release the Shared Lock

A Locking Strategy for Searches
 A search should obtain Shared locks on nodes, starting at the root

and proceeding along the path to the desired leaf

 Since searches never go back up the tree, a lock on a node can be
released as soon as a lock on a child node is obtained

 Example: Search for data entry 38*

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23

Keep Locked Until
the Result is Returned

Towards A Locking Strategy for
Insertions/Deletions

 A conservative strategy for an insertion/deletion would be
to obtain Exclusive locks on all the nodes along the path to
the desired leaf
 This is because splits/merges can propagate all the way up

to the root

 However, once a child is locked, its lock will be needed
only if a split/merge propagates back to it

 When won’t a split propagate back to a node?
 When the node’s child is not full

 When won’t a merge propagate back to a node?
 When the node’s child is more than half-empty

Lock-Coupling: A Locking Strategy for
Insertions/Deletions (Cont’d)

 A strategy, known as lock-coupling, for insertions/deletions
can be pursued as follows:
 Start at the root and go down, obtaining Shared locks as

needed (an Exclusive lock is only obtained for the desired
leaf node)

 Once a child is locked, check if it is safe
 If the child is safe, release all locks on ancestors

 A node is safe when changes will not propagate up beyond it
 A safe node for an insertion is the one that is not full
 A safe node for a deletion is the one that is more than

half-empty

Lock-Coupling: An Example

 Insert data entry 45*:

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23

Obtain a Shared Lock

Lock-Coupling: An Example

 Insert data entry 45*:

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23

Obtain a Shared Lock

Lock-Coupling: An Example

 Insert data entry 45*:

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23

Release the Shared Lock Since the
Child is Not Full

Obtain a Shared Lock

Lock-Coupling: An Example

 Insert data entry 45*:

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23
Obtain a

Shared Lock

Lock-Coupling: An Example

 Insert data entry 45*:

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23
Obtain a

Shared Lock

Keep the Shared Lock
Since the Child is Full

Lock-Coupling: An Example

 Insert data entry 45*:

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23
Obtain an

Exclusive Lock

Lock-Coupling: An Example

 Insert data entry 45*:

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23
Obtain an

Exclusive Lock

Release the Shared Lock
Since the Child is Not Full

Lock-Coupling: An Example

 Insert data entry 45*:

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23
Obtain an

Exclusive Lock

Release the Shared Lock
Since the Child is Not Locked

Lock-Coupling: An Example

 Insert data entry 45*:

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23
Insert 45* and

Release the Lock

Lock-Coupling: Another Example

 Insert data entry 25*:

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23

Obtain a Shared Lock

Lock-Coupling: Another Example

 Insert data entry 25*:

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23

Obtain a Shared Lock

Lock-Coupling: Another Example

 Insert data entry 25*:

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23

Release the Shared Lock Since the
Child is Not Full

Obtain a Shared Lock

Lock-Coupling: Another Example

 Insert data entry 25*:

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23
Obtain a

Shared Lock

Lock-Coupling: Another Example

 Insert data entry 25*:

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23
Obtain a

Shared Lock

Release the Shared Lock
Since the Child is Not Full

Lock-Coupling: Another Example

 Insert data entry 25*:

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23

Obtain an
Exclusive Lock

Lock-Coupling: Another Example

 Insert data entry 25*:

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23

Obtain an
Exclusive Lock

Request an Upgrade on the Lock
Since the Child is Full

Lock-Coupling: Another Example

 Insert data entry 25*:

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23

Obtain an
Exclusive Lock

What if another transaction has a
Shared lock on this node and wants

to access the locked child node?

Lock-Coupling: Another Example

 Insert data entry 25*:

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23

Obtain an
Exclusive Lock

A DEADLOCK Will Arise!

Lock-Coupling: Another Example

 Insert data entry 25*:

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23

Insert 25* and
Propagate

Otherwise…

Next Class

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Continue…

	Database Applications (15-415)��DBMS Internals- Part XII�Lecture 20, April 9, 2014
	Today…
	DBMS Layers
	Outline
	Lock Conversions
	Lock Upgrades
	Lock Downgrades
	Outline
	Deadlock Detection
	Deadlock Detection (Cont’d)
	Deadlock Detection (Cont’d)
	Deadlock Detection (Cont’d)
	Resolving Deadlocks
	Deadlock Prevention
	Deadlock Prevention (Cont’d)
	Reissuing Timestamps
	Outline
	Dynamic Databases
	A Possible Scenario
	A Possible Scenario (Cont’d)
	A Possible Scenario (Cont’d)
	A Possible Scenario (Cont’d)
	A Possible Scenario (Cont’d)
	A Possible Scenario: Revisit
	The Phantom Problem
	How Can We Solve the �Phantom Problem?
	Outline
	Concurrency Control in B+ Trees
	A Locking Strategy for Searches
	A Locking Strategy for Searches
	A Locking Strategy for Searches
	A Locking Strategy for Searches
	A Locking Strategy for Searches
	A Locking Strategy for Searches
	A Locking Strategy for Searches
	A Locking Strategy for Searches
	Towards A Locking Strategy for Insertions/Deletions
	Lock-Coupling: A Locking Strategy for Insertions/Deletions (Cont’d)
	Lock-Coupling: An Example
	Lock-Coupling: An Example
	Lock-Coupling: An Example
	Lock-Coupling: An Example
	Lock-Coupling: An Example
	Lock-Coupling: An Example
	Lock-Coupling: An Example
	Lock-Coupling: An Example
	Lock-Coupling: An Example
	Lock-Coupling: Another Example
	Lock-Coupling: Another Example
	Lock-Coupling: Another Example
	Lock-Coupling: Another Example
	Lock-Coupling: Another Example
	Lock-Coupling: Another Example
	Lock-Coupling: Another Example
	Lock-Coupling: Another Example
	Lock-Coupling: Another Example
	Lock-Coupling: Another Example
	Next Class

