Database Applications (15-415)

The Entity Relationship Model Lecture 2, January 15, 2014

Mohammad Hammoud

Today...

Last Session:

 Course overview and a brief introduction on databases and database systems

Today's Session:

- Main steps involved in designing databases
- Constructs of the entity relationship (ER) model
- Integrity constrains that can be expressed in the ER model
- Conceptual design choices

Announcements:

- The first Problem Solving Assignment (PS1) is now posted
 - Deadline is Jan 23, 2014 by midnight
- Tomorrow is the first recitation
 - A case study on the ER model will be solved

Outline

Database Design

- Requirements Analysis
 - Users needs
- Conceptual Design
 - A high-level description of the data (e.g., using the ER model)
- Logical Design
 - The conversion of an ER design into a relational database schema
- Schema Refinement
 - Normalization (i.e., restructuring tables to ensure some desirable properties)
- Physical Design
 - Building indexes and clustering some tables
- Security Design
 - Access controls

Outline

Entities and Entity Sets

Entity:

- A real-world object distinguishable from other objects in an enterprise (e.g., University, Students and Faculty)
- Described using a set of *attributes*

Entity set:

- A collection of similar entities (e.g., *all* employees)
- All entities in an entity set have the same set of attributes (until we consider ISA hierarchies, anyway!)
- Each entity set has a key
- Each attribute has a *domain*

Carnegie Mellon University Qatar

Relationship and Relationship Sets

Relationship:

- Association among two or more entities (e.g., Mohammad is teaching 15-415)
- Described using a set of attributes

Relationship set:

- Collection of similar relationships
- Same entity set could participate in different relationship sets, or in different "roles" in the same set

More Tools and ER Diagrams

A Binary Relationship

A Self-Relationship

Ternary Relationships

- Suppose that departments have offices at different locations and we want to record the locations at which each employee works
- Consequently, we must record an association between an employee, a department and a location

This is referred to as a "Ternary Relationship" (vs. Self & Binary Relationships)

Key Constraints

- Consider the "Employees" and "Departments" entity sets with a "Manages" relationship set
 - An employee can work in *many* departments
 - A department can have *many* employees
 - EachThis restriction is an example of a "key constraint"

Cardinalities

- Entities can be related to one another as "one-to-one", "one-tomany" and "many-to-many"
 - This is said to be the cardinality of a given entity in relation to another

Cardinalities: Examples

جامدة کارنیجی میلود فی قطر Carnegie Mellon University Qatar

Cardinalities: Examples

جامعہ کارنیدی میلود فی قطر Carnegie Mellon University Qatar

Cardinalities: Examples

جا مہۃ کارنے جے میلود فی قطر Carnegie Mellon University Qatar

A Working Example

 Requirements: Students, taking courses, offered by instructors; a course may have multiple sections; one instructor per section

- How to start?
 - Nouns -> entity sets
 - Verbs -> relationship sets

Primary key = unique identifier → <u>underline</u> جامحة ڪارنيجي ميلور في قطر Carnegie Mellon University Qatar

But: sections of a course (with different instructors)?

But: s-id is not unique... (see later)

Q: how to record that students take courses?

Participation Constraints

- Consider again the "Employees" and "Departments" entity sets as well as the "Manages" relationship set
 - Should every department have a manager?
 - If so, this is a participation constraint
 - Such a constraint entails that every Departments entity must appear in an instance of the Manages relationship
 - The participation of Departments in Manages is said to be total (vs. partial)

Total vs. Partial Participations

Total vs. Partial Participation

جامعۃ کارنے جی میلوں فی قطر Carnegie Mellon University Qatar

Total vs. Partial Participation

Weak Entities

- A weak entity can be identified uniquely only by considering the primary key of another (*owner*) entity
 - Owner entity set and weak entity set must participate in a oneto-many relationship set (one owner, many weak entities)
 - Weak entity set must have total participation in this identifying relationship set
- The set of attributes of a weak entity set that uniquely identify a weak entity for a given owner entity is called partial key

Weak Entities: An Example

- "Dependents" has no unique key of its own
 - "Dependents" is a weak entity with partial key "pname"
 - "Policy" is an identifying relationship set
 - "pname" + "ssn" are the primary key of "Dependents"

are drawn using thick lines

Carnegie Mellon University Qatar

ISA (`is a') Hierarchies

- Entities in an entity set can sometimes be classified into subclasses (this is "kind of similar" to OOP languages)
- If we declare B ISA A, every B entity is also considered to be an A entity

Overlap and Covering Constraints

- Overlap constraints
 - Can an entity belong to both 'B' and 'C'?

- Covering constraints
 - Can an 'A' entity belong to neither 'B' nor 'C'?

Overlap Constraints: Examples

Overlap constraints

- Can John be in Hourly_Emps and Contract_Emps? Intuitively, no
- Can John be in Contract_Emps
 and in Senior_Emps?
 Intuitively, yes →
 "Contract_Emps OVERLAPS Senior_Emps"

Covering Constraints: Examples

Covering constraints

- Does every one in Employees belong to a one of its subclasses? Intuitively, no
- Does every Motor_Vehicles entity have to be either a Motorboats entity or a Cars entity? Intuitively, yes → "Motorboats AND Cars COVER Motor_Vehicles"

More Details on ISA Hierarchies

- Attributes are *inherited* (i.e., if B ISA A, the attributes defined for a B entity are the attributes for A *plus* B)
- We can have *many* levels of an ISA hierarchy
- Reasons for using ISA:
 - To add descriptive attributes specific to a subclass
 - To identify entities that participate in a relationship

Aggregation

 Aggregation allows indicating that a relationship set (identified through a *dashed box*) participates in another relationship set

Outline

Conceptual Design Choices

- Should a concept be modeled as an *entity* or an *attribute*?
- Should a concept be modeled as an *entity* or a *relationship*?
- How should we identify relationships?
 - *Binary* or *ternary*?
 - Ternary or aggregation?
- Constraints in the ER Model:
 - A lot of data semantics can (and should) be captured
 - But some constraints cannot be captured in ER diagrams

Entity vs. Attribute

- Should address be an attribute of Employees or an entity (connected to Employees by a relationship)?
- This depends upon the use we want to make of address information, and the semantics of the data
 - If we have several addresses per an employee, address must be an entity (since attributes cannot be set-valued)
 - If the structure (city, street, etc.) is important (e.g., we want to retrieve employees in a given city), address must be modeled as an entity

Entity vs. Attribute (Cont'd)

• Consider the following ER diagram:

- A problem: Works_In4 does not allow an employee to work in a department for two or more periods
- Solution: introduce "Duration" as a new entity set

Entity vs. Relationship

 Consider the following ER diagram whereby a manager gets a separate discretionary budget for each department

Bad design!

Key constraint on Policies would mean policy can only cover 1 dependent!

Better design!

What are the additional constraints?

 But sometimes ternary relationships cannot be replaced by a set of binary relationships

 But sometimes ternary relationships cannot be replaced by a set of binary relationships

Carnegie Mellon University Qatar

 But sometimes ternary relationships cannot be replaced by a set of binary relationships

 But sometimes ternary relationships cannot be replaced by a set of binary relationships

- But sometimes ternary relationships cannot be replaced by a set of binary relationships
 - S "can-supply" P,
 D "needs" P, and D
 "deals-with" S does
 not imply that D
 has agreed to buy P
 from S
 - How do we record qty?

Ternary vs. Aggregation Relationships

Ternary vs. Aggregation Relationships (Cont'd)

 We might reasonably use a ternary relationship instead of an aggregation

What if each sponsorship (of a project by a department) is to be monitored by at most one employee?

Summary

- Conceptual design follows requirements analysis
 - Yields a high-level description of data to be stored
- The ER model is popular for conceptual design
 - Its constructs are expressive, close to the way people think about their applications
- The basic constructs of the ER model are:
 - Entities, relationships, and attributes (of entities and relationships)

Summary

- Some additional constructs of the ER model are:
 - Weak entities, ISA hierarchies, and aggregation
- Several kinds of integrity constraints can be expressed in the ER model
 - Key constraints, participation constraints, and overlap/covering constraints for ISA hierarchies
- Note: there are many variations on the ER model

Summary

- ER design is *subjective*
 - There are often many ways to model a given scenario!
 - Analyzing alternatives can be tricky, especially for a large enterprise
 - Common choices include:
 - Entity vs. attribute
 - Entity vs. relationship
 - Binary or *n-ary* relationship (e.g., ternary)
 - Whether or not to use ISA hierarchies
 - Whether or not to use aggregation

Next Class

The relational Model

