
Database Applications (15-415)

DBMS Internals- Part XI
Lecture 19, April 2, 2014

Mohammad Hammoud

Today…
 Last Session:
 DBMS Internals- Part IX

 Query Optimization (Cont’d)
 A “Very” Brief Introduction to Transaction Management

 Today’s Session:
 Transaction Management

 Announcements:
 Quiz 2 is Tomorrow, April 3, at 5:00PM

in Room 2147 (all materials covered after the midterm are
included, except transaction management)

 PS4 is now posted. It is due on Saturday, April 12th
 Project 3 is due on Saturday, April 5th by midnight
 On Monday, April 7th, every student will live demo his P3 in 5

minutes (during the class time)

DBMS Layers

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Outline

A Brief Primer on Transaction
Management

Anomalies Due to Concurrency

2PL and Strict 2PL Locking Protocols

Schedules with Aborted Transactions



Concurrent Execution of Programs
 A database is typically shared by a large number of users

 DBMSs schedule users’ programs concurrently
 While one user program is waiting for an I/O access to be

satisfied, the CPU can process another program
 Better system throughput

 Interleaved execution of a short program with a long
program allows the short program to complete quickly
 Better response time
 Better for fairness reasons

Transactions
 Any one execution of a user program in a DBMS is denoted

as a transaction
 Executing the same program several times will generate

several transactions

 A transaction is the basic unit of change as seen by a DBMS
 E.g., Transfer $100 from account A to account B

 A transaction may carry out many operations on data, but

DBMSs are only concerned about reads and writes

 Thus, in essence a transaction becomes a sequence of reads
and writes

Transactions (Cont’d)
 In addition to reading and writing, a transaction must

specify as its final action:
 Either Commit (i.e., complete successfully)
 Or Abort (i.e., terminate and undo actions)

 We make two assumptions:
 Transactions interact only via database reads and

writes (i.e., no message passing)
 A database is a fixed collection of independent

objects (A, B, C, etc.)

Schedules
 A schedule is a list of actions (i.e., read, write, abort, and/or

commit) from a set of transactions

 The order in which two actions of a transaction T appear in a
schedule must be the same as they appear in T itself

 Assume T1 = [R(A), W(A)] and T2 = [R(B), W(B), R(C), W(C)]

T1 T2
R(A)
W(A)

R(B)
W(B)

R(C)
W(C)

T1 T2
R(A)
W(A)

R(B)
W(B)
R(C)
W(C)

 

T1 T2
R(A)
W(A)

R(C)
W(C)

R(B)
W(B)

Serial Schedules
 A complete schedule must contain all the actions of

every transaction that appears on it

 If the actions of different transactions are not
interleaved, the schedule is called a serial schedule

T1 T2

R(A)
W(A)
Commit

R(B)
W(B)

R(C)
W(C)
Commit

T1 T2
R(A)
W(A)
Commit

R(A)
W(A)
R(C)
W(C)
Commit

A Serial Schedule A Non-Serial Schedule

Serializable Schedules
 Two schedules are said to be equivalent if for any database

state, the effect of executing the 1st schedule is identical to
the effect of executing the 2nd schedule

 A serializable schedule is a schedule that is equivalent to a
serial schedule

T1 T2
R(A)
W(A)

R(B)
W(B)

Commit

R(A)
W(A)

R(B)
W(B)
Commit

A Serializable Schedule

T1 T2
R(A)
W(A)
R(B)
W(B)
Commit

R(A)
W(A)
R(B)
W(B)
Commit

A Serial Schedule

Equivalent

T1 T2

R(A)

W(A)
R(B)
W(B)

Commit

R(A)
W(A)

R(B)
W(B)

Commit

Another Serializable Schedule

Equivalent

Examples
 Assume transactions T1 and T2 as follows:

 T1 can be thought of as transferring $100 from A’s

account to B’s account

 T2 can be thought of as crediting accounts A and B with
a 6% interest payment

T1: BEGIN A=A-100, B=B +100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Examples: A Serial Schedule
 Assume transactions T1 and T2 as follows:

T1: BEGIN A=A-100, B=B +100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Bal=1000 Bal=1000

T1: Transfer $100 from A to B T2 = Add interest of 6% to A and B

3 1

4 2 Bal=1060

Account A Account B

Bal=1060 Bal=960 Bal=1160



Examples: Another Serial Schedule
 Assume transactions T1 and T2 as follows:

T1: BEGIN A=A-100, B=B +100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Bal=1000 Bal=1000

T1: Transfer $100 from A to B T2 = Add interest of 6% to A and B

Bal=900

1 3

2 Bal=1100 4 Bal=954

Account A Account B

Bal=1166

Previously:
Account A = 960
Account B = 1160



Examples: A Serializable Schedule
 Assume transactions T1 and T2 as follows:

T1: BEGIN A=A-100, B=B +100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Bal=1000 Bal=1000

T1: Transfer $100 from A to B T2 = Add interest of 6% to A and B

Bal=900

1 4

3 Bal=1100 2 Bal=954

Account A Account B

Bal=1166

A Previous Serial Schedule:
Account A = 954

Account B = 1166



Comments
 There is no guarantee that T1 will execute before T2 or

vice-versa, if both are submitted together

 However, the net effect must be equivalent to these
two transactions running serially in some order

 Executing transactions serially in different orders may
produce different results, but they are all acceptable!

 The DBMS makes no guarantees about which result will
be the outcome of an interleaved execution

Outline

A Brief Primer on Transaction
Management

Anomalies Due to Concurrency

2PL and Strict 2PL Locking Protocols

Schedules with Aborted Transactions



Anomalies
 Interleaving actions of different transactions can leave the

database in an inconsistent state

 Two actions on the same data object are said to conflict if at
least one of them is a write

 There are 3 anomalies that can arise upon interleaving
actions of different transactions (say, T1 and T2):
 Write-Read (WR) Conflict: T2 reads a data object previously

written by T1
 Read-Write (RW) Conflict: T2 writes a data object previously

read by T1
 Write-Write (WW) Conflict: T2 writes a data object previously

written by T1

Reading Uncommitted Data: WR Conflicts
 WR conflicts arise when transaction T2 reads a data object A

that has been modified by another transaction T1, which
has not yet committed
 Such a read is called a dirty read

 Assume T1 and T2 such that:
 T1 transfers $100 from A’s account to B’s account
 T2 credits accounts A and B with a 6% interest payment

T1: BEGIN A=A-100, B=B +100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Reading Uncommitted Data: WR Conflicts
 Suppose that T1 and T2 actions are interleaved as follows:
 T1 deducts $100 from account A
 T2 adds 6% interest to accounts A and B
 T1 credits $100 to account B

Bal=1000 Bal=1000

T1: Transfer $100 from A to B T2 = Add interest of 6% to A and B

Account A Account B

Reading Uncommitted Data: WR Conflicts
 Suppose that T1 and T2 actions are interleaved as follows:
 T1 deducts $100 from account A
 T2 adds 6% interest to accounts A and B
 T1 credits $100 to account B

Bal=1000 Bal=1000

T1: Transfer $100 from A to B T2 = Add interest of 6% to A and B

Bal=900

1 2

4 3 Bal=954

Account A Account B

Bal=1060 Bal=1160

Different than any
serial schedule. (I.e.,

Neither: [A = 954 and B = 1166]
Nor: [A = 960 and B = 1160])

1
2 and 3
4

Reading Uncommitted Data: WR Conflicts
 T1 and T2 can be represented by the following schedule:

T1 T2
R(A)
W(A)

R(B)
W(B)
Commit

R(A)
W(A)
R(B)
W(B)
Commit

The value of A written by T1 is read
by T2 before T1 has completed all

its changes!

Why is this a problem?

Reading Uncommitted Data: WR Conflicts
 T1 and T2 can be represented by the following schedule:

T1 T2
R(A)
W(A)

R(B)
W(B)
Commit

R(A)
W(A)
R(B)
W(B)
Commit

The value of A written by T1 is read
by T2 before T1 has completed all

its changes!

Why is this a problem?

 T1 may write some value into A that makes the database inconsistent
 As long as T1 overwrites this value with a ‘correct’ value of A before committing,

no harm is done if T1 and T2 are run in some serial order (this is because T2
would then not see the temporary inconsistency)

Reading Uncommitted Data: WR Conflicts
 T1 and T2 can be represented by the following schedule:

T1 T2
R(A)
W(A)

R(B)
W(B)
Commit

R(A)
W(A)
R(B)
W(B)
Commit

The value of A written by T1 is read
by T2 before T1 has completed all

its changes!

Why is this a problem?

Note that although a transaction must leave a database in a
consistent state after it completes, it is not required to keep the

database consistent while it is still in progress!

Unrepeatable Reads: RW Conflicts
 RW conflicts arise when transaction T2 writes a data

object A that has been read by another transaction T1,
while T1 is still in progress

 If T1 tries to read A again, it will get a different result!
 Such a read is called an unrepeatable read

 Assume A is the number of available copies for a book
 A transaction that places an order on the book reads A,

checks that A > 0 and decrements A
 Assume two transactions, T1 and T2

Unrepeatable Reads: RW Conflicts
 Suppose that T1 and T2 actions are interleaved as follows:
 T1 reads A
 T2 reads A, decrements A and commit
 T1 tries to decrement A

A=1

T1: Places an order on a book
of quantity A

T2 = Places an order on a book
of quantity A

1: Read A = 1
2: Read A = 1

A=0 3: Decrement A & Commit 4: Decrement A = ERROR!

This situation will never arise in a serial execution of T1 and T2; T2 would read A
and see 0 and therefore not proceed with placing an order!

Overwriting Uncommitted Data:
WW Conflicts

 WW conflicts arise when transaction T2 writes a data object
A that has been written by another transaction T1, while T1
is still in progress

 Suppose that Mohammad and Ahmad are two employees
and their salaries must be kept equal

 Assume T1 sets Mohammad’s and Ahmad’s salaries to $1000

 Assume T2 sets Mohammad’s and Ahmad’s salaries to $2000

Overwriting Uncommitted Data:
WW Conflicts

MS=0 AS=0

T1: Sets Salaries to $1000 T2 = Sets Salaries to $2000

3 1

4 2

Mohammad’s Salary Ahmad’s Salary

AS=2000 MS=2000


AS=1000 MS=1000

Overwriting Uncommitted Data:
WW Conflicts

MS=0 AS=0

T1: Sets Salaries to $1000 T2 = Sets Salaries to $2000

1 3

2 4

Mohammad’s Salary Ahmad’s Salary

MS=1000 AS=1000 AS=2000 MS=2000


Either serial schedule is acceptable from a consistency standpoint (although

Mohammad and Ahmad may prefer a higher salary!)

Neither T1 nor T2 reads a salary value before writing it- such a write is called a
blind write!

Overwriting Uncommitted Data:
WW Conflicts

MS=0 AS=0

T1: Sets Salaries to $1000 T2 = Sets Salaries to $2000

1 2

3 4

Mohammad’s Salary Ahmad’s Salary

MS=1000 AS=2000 MS=2000 AS=1000

The problem is that we have a lost update. In particular, T2
overwrote Mohammad’s Salary as set by T1 (this will never

happen with a serializable schedule!)

Outline

A Brief Primer on Transaction
Management

Anomalies Due to Concurrency

2PL and Strict 2PL Locking Protocols

Schedules with Aborted Transactions



Locking Protocols
 WR, RW and WW anomalies can be avoided using a

locking protocol

 A locking protocol:
 Is a set of rules to be followed by each transaction to ensure

that only serializable schedules are allowed (extended later)
 Associates a lock with each database object, which could be of

different types (e.g., shared or exclusive)
 Grants and denies locks to transactions according to the

specified rules

 The part of the DBMS that keeps track of locks is called the
lock manager

Lock Managers
 Usually, a lock manager in a DBMS maintains three types of

data structures:
 A queue, Q, for each lock, L,

to hold its pending requests

 A lock table, which keeps for
each L associated with
each object, O, a record R
that contains:
 The type of L (e.g., shared or exclusive)
 The number of transactions currently holding L on O
 A pointer to Q

 A transaction table, which maintains for each transaction, T, a

pointer to a list of locks held by T

Lock Queue 1
(Q1)

Object Lock # Type # of Trx Q

O L S 1 Q1

Lock Table

Transaction List 1 (LS1)
Trx List

T1 LS1

Transaction Table

Two-Phase Locking
 A widely used locking protocol, called Two-Phase

Locking (2PL), has two rules:
 Rule 1: if a transaction T wants to read (or write) an

object O, it first requests the lock manager for a shared
(or exclusive) lock on O

T0 T1 T2

Lock
Manager

Read Request
on Object O

“Shared”
Lock Granted

Q
ue

ue

T0 T1 T2

Lock
Manager

Write Request
on Object O Lock Denied

Q
ue

ue

T0 T1 T2

Lock
Manager

Read
Request

on Object O

“Shared”
Lock Granted

Q
ue

ue
 2

Time t0 t1 t2

Two-Phase Locking
 A widely used locking protocol, called Two-Phase

Locking (2PL), has two rules:
 Rule 1: if a transaction T wants to read (or write) an

object O, it first requests the lock manager for a shared
(or exclusive) lock on O

T0 T1 T2

Lock
Manager

Release Lock
on Object O

Q
ue

ue

T0 T1 T2

Lock
Manager

“Exclusive” Lock
Granted

Q
ue

ue

T0 T1 T2

Lock
Manager

Release Lock
on Object O

Q
ue

ue
 2

Time t3 t4 t5

Two-Phase Locking
 A widely used locking protocol, called Two-Phase

Locking (2PL), has two rules:
 Rule 1: if a transaction T wants to read (or write) an

object O, it first requests the lock manager for a shared
(or exclusive) lock on O

T0 T1 T2

Lock
Manager Q

ue
ue

T0 T1 T2

Lock
Manager Q

ue
ue

T0 T1 T2

Lock
Manager Q

ue
ue

Time

Read Request
on Object O

Lock Denied

2

Read
Request

on Object O

Lock Denied

2

Release Lock
on Object O

t6 t7 t8

Two-Phase Locking
 A widely used locking protocol, called Two-Phase

Locking (2PL), has two rules:
 Rule 1: if a transaction T wants to read (or write) an

object O, it first requests the lock manager for a shared
(or exclusive) lock on O

T0 T1 T2

Lock
Manager Q

ue
ue

T0 T1 T2

Lock
Manager Q

ue
ue

T0 T1 T2

Lock
Manager Q

ue
ue

Time

2
2

“Shared”
Lock Granted

“Shared”
Lock Granted

t9 t9

Write Request
on Object O Lock Denied

2

t10

Two-Phase Locking
 A widely used locking protocol, called Two-Phase Locking

(2PL), has two rules:
 Rule 2: T can release locks before it commits or aborts, and

cannot request additional locks once it releases any lock

 Thus, every transaction has a “growing” phase in which it
acquires locks, followed by a “shrinking” phase in which it
releases locks

locks

growing phase shrinking phase

Two-Phase Locking
 A widely used locking protocol, called Two-Phase Locking

(2PL), has two rules:
 Rule 2: T can release locks before it commits or aborts, and

cannot request additional locks once it releases any lock

 Thus, every transaction has a “growing” phase in which it
acquires locks, followed by a “shrinking” phase in which it
releases locks

locks

violation of 2PL

Resolving RW Conflicts Using 2PL
 Suppose that T1 and T2 actions are interleaved as follows:
 T1 reads A
 T2 reads A, decrements A and commit
 T1 tries to decrement A

 T1 and T2 can be represented by the following schedule:

 T1 T2
R(A)

W(A)
Commit

R(A)
W(A)
Commit

Exposes RW Anomaly

T1 T2
EXCLUSIVE(A)
R(A)

W(A)
Commit

EXCLUSIVE(A)
R(A)
W(A)
Commit

Lock(A)

Wait

RW
Conflict

Resolved!

Resolving RW Conflicts Using 2PL
 Suppose that T1 and T2 actions are interleaved as follows:
 T1 reads A
 T2 reads A, decrements A and commit
 T1 tries to decrement A

 T1 and T2 can be represented by the following schedule:

 T1 T2
R(A)

W(A)
Commit

R(A)
W(A)
Commit

Exposes RW Anomaly

T1 T2
EXCLUSIVE(A)
R(A)

W(A)
Commit

Lock(A)

Wait

But, it can
limit

parallelism!

EXCLUSIVE(A)
R(A)
W(A)
Commit

Resolving WW Conflicts Using 2PL
 Suppose that T1 and T2 actions are interleaved as follows:
 T1 sets Mohammad’s Salary to $1000
 T2 sets Ahmad’s Salary to $2000
 T1 sets Ahmad’s Salary to $1000
 T2 sets Mohammad’s Salary to $2000

 T1 and T2 can be represented by the following schedule:

 T1 T2
W(MS)

W(AS)
Commit

W(AS)

W(MS)
Commit

Exposes WW Anomaly
(assuming, MS & AS must be kept equal)

T1 T2
EXCLUSIVE(MS)
EXCLUSIVE(AS)
W(MS)
W(AS)
Commit

EXCLUSIVE(AS)
EXCLUSIVE(MS)
W(AS)
W(MS)
Commit

Lock(AS)

Wait

WW
Conflict

Resolved!

Resolving WW Conflicts Using 2PL
 Suppose that T1 and T2 actions are interleaved as follows:
 T1 sets Mohammad’s Salary to $1000
 T2 sets Ahmad’s Salary to $2000
 T1 sets Ahmad’s Salary to $1000
 T2 sets Mohammad’s Salary to $2000

 T1 and T2 can be represented by the following schedule:

 T1 T2
W(MS)

W(AS)
Commit

W(AS)

W(MS)
Commit

Exposes WW Anomaly
(assuming, MS & AS must be kept equal)

T1 T2
EXCLUSIVE(MS)
W(MS)
Lock(AS)

EXCLUSIVE(AS)
W(AS)
Lock(MS)

Wait

Deadlock!

Wait

Resolving WR Conflicts
 Suppose that T1 and T2 actions are interleaved as follows:
 T1 deducts $100 from account A
 T2 adds 6% interest to accounts A and B
 T1 credits $100 to account B

 T1 and T2 can be represented by the following schedule:

T1 T2

R(A)
W(A)

R(B)
W(B)
Commit

R(A)
W(A)
R(B)
W(B)
Commit

Exposes WR Anomaly

T1 T2
EXCLUSIVE(A)
EXCLUSIVE(B)
R(A)
W(A)
R(B)
W(B)
Commit

EXCLUSIVE(A)
EXCLUSIVE(B)
R(A)
W(A)
R(B)
W(B)
Commit

Lock(A)

Wait

Lock(B)
WR

Conflict
Resolved!

Resolving WR Conflicts
 Suppose that T1 and T2 actions are interleaved as follows:
 T1 deducts $100 from account A
 T2 adds 6% interest to accounts A and B
 T1 credits $100 to account B

 T1 and T2 can be represented by the following schedule:

T1 T2

R(A)
W(A)

R(B)
W(B)
Commit

R(A)
W(A)
R(B)
W(B)
Commit

Exposes WR Anomaly

T1 T2
EXCLUSIVE(A)
EXCLUSIVE(B)
R(A)
W(A)
RELEASE(A)
R(B)
W(B)
Commit

EXCLUSIVE(A)
R(A)
W(A)
EXCLUSIVE(B)
R(B)
W(B)
Commit

Lock(A)

Wait
Lock(B)

WR
Conflict is

NOT
Resolved!

How can
we solve

this?

Strict Two-Phase Locking
 WR conflicts (as well as RW & WW) can be solved by

making 2PL stricter

 In particular, Rule 2 in 2PL can be modified
as follows:
 Rule 2: locks of a transaction T can only be released

after T completes (i.e., commits or aborts)

 This version of 2PL is called Strict Two-Phase Locking

Resolving WR Conflicts: Revisit
 Suppose that T1 and T2 actions are interleaved as follows:
 T1 deducts $100 from account A
 T2 adds 6% interest to accounts A and B
 T1 credits $100 to account B

 T1 and T2 can be represented by the following schedule:

T1 T2

R(A)
W(A)

R(B)
W(B)
Commit

R(A)
W(A)
R(B)
W(B)
Commit

Exposes WR Anomaly

T1 T2
EXCLUSIVE(A)
EXCLUSIVE(B)
R(A)
W(A)
RELEASE(A)
R(B)
W(B)
Commit

EXCLUSIVE(A)
R(A)
W(A)
EXCLUSIVE(B)
R(B)
W(B)
Commit

Lock(A)

Wait
Lock(B)

Not allowed with strict 2PL

Resolving WR Conflicts: Revisit
 Suppose that T1 and T2 actions are interleaved as follows:
 T1 deducts $100 from account A
 T2 adds 6% interest to accounts A and B
 T1 credits $100 to account B

 T1 and T2 can be represented by the following schedule:

T1 T2

R(A)
W(A)

R(B)
W(B)
Commit

R(A)
W(A)
R(B)
W(B)
Commit

Exposes WR Anomaly

T1 T2
EXCLUSIVE(A)
EXCLUSIVE(B)
R(A)
W(A)
R(B)
W(B)
Commit

EXCLUSIVE(A)
EXCLUSIVE(B)
R(A)
W(A)
R(B)
W(B)
Commit

Lock(A)

Wait

Lock(B)
WR Conflict
is Resolved!

But,
parallelism
is limited

more!

2PL vs. Strict 2PL

 Two-Phase Locking (2PL):
 Limits concurrency
 May lead to deadlocks
 May have ‘dirty reads’

 Strict 2PL:
 Limits concurrency more

(but, actions of different
transactions can still be interleaved)
 May still lead to deadlocks
 Avoids ‘dirty reads’

T1 T2
SHARED(A)
R(A)

EXCLUSIVE(C)
R(C)
W(C)
Commit

SHARED(A)
R(A)
EXECLUSIVE(B)
R(B)
W(B)
Commit

A Schedule with Strict 2PL
and Interleaved Actions

Performance of Locking
 Locking comes with delays mainly from blocking

 Usually, the first few transactions are unlikely to conflict
 Throughput can rise in proportion to the number of active

transactions

 As more transactions are executed concurrently, the
likelihood of blocking increases
 Throughput will increase more slowly with the number of

active transactions

 There comes a point when adding another active
transaction will actually decrease throughput
 When the system thrashes!

Performance of Locking (Cont’d)

 If a database begins to thrash, the DBA should
reduce the number of active transactions

 Empirically, thrashing is seen to occur when

30% of active transactions are blocked!

of Active Transactions

Th
ro

ug
hp

ut

Thrashing

Outline

A Brief Primer on Transaction
Management

Anomalies Due to Concurrency

2PL and Strict 2PL Locking Protocols

Schedules with Aborted Transactions 

Schedules with Aborted Transactions
 Suppose that T1 and T2 actions are interleaved as follows:
 T1 deducts $100 from account A
 T2 adds 6% interest to accounts A and B, and commits
 T1 is aborted

 T1 and T2 can be represented by the following schedule:

 T1 T2
R(A)
W(A)

Abort

R(A)
W(A)
R(B)
W(B)
Commit

T2 read a value for A that should never have been there!

How can we deal with the situation, assuming T2
had not yet committed?

Schedules with Aborted Transactions
 Suppose that T1 and T2 actions are interleaved as follows:
 T1 deducts $100 from account A
 T2 adds 6% interest to accounts A and B, and commits
 T1 is aborted

 T1 and T2 can be represented by the following schedule:

 T1 T2
R(A)
W(A)

Abort

R(A)
W(A)
R(B)
W(B)
Commit

We can cascade the abort of T1 by aborting T2 as well!

This “cascading process” can be recursively applied to
any transaction that read A written by T1

T2 read a value for A that should never have been there!

Schedules with Aborted Transactions
 Suppose that T1 and T2 actions are interleaved as follows:
 T1 deducts $100 from account A
 T2 adds 6% interest to accounts A and B, and commits
 T1 is aborted

 T1 and T2 can be represented by the following schedule:

 T1 T2
R(A)
W(A)

Abort

R(A)
W(A)
R(B)
W(B)
Commit

How can we deal with the situation, assuming T2
had actually committed?

The schedule is indeed unrecoverable!

T2 read a value for A that should never have been there!

Schedules with Aborted Transactions
 Suppose that T1 and T2 actions are interleaved as follows:
 T1 deducts $100 from account A
 T2 adds 6% interest to accounts A and B, and commits
 T1 is aborted

 T1 and T2 can be represented by the following schedule:

 T1 T2
R(A)
W(A)

Abort

R(A)
W(A)
R(B)
W(B)
Commit

For a schedule to be recoverable, transactions
should commit only after all transactions whose

changes they read commit!

“Recoverable schedules” avoid cascading aborts!

T2 read a value for A that should never have been there!

Schedules with Aborted Transactions
 Suppose that T1 and T2 actions are interleaved as follows:
 T1 deducts $100 from account A
 T2 adds 6% interest to accounts A and B, and commits
 T1 is aborted

 T1 and T2 can be represented by the following schedule:

 T1 T2
R(A)
W(A)

Abort

R(A)
W(A)
R(B)
W(B)
Commit

How can we ensure “recoverable schedules”?

By using Strict 2PL!

T2 read a value for A that should never have been there!

Schedules with Aborted Transactions
 Suppose that T1 and T2 actions are interleaved as follows:
 T1 deducts $100 from account A
 T2 adds 6% interest to accounts A and B, and commits
 T1 is aborted

 T1 and T2 can be represented by the following schedule:

T1 T2

R(A)
W(A)

Abort

R(A)
W(A)
R(B)
W(B)
Commit

T1 T2

EXCLUSIVE(A)
R(A)
W(A)

Abort
UNDO(T1)

EXCLUSIVE(A)
R(A)
W(A)
EXCLUSIVE(B)
R(B)
W(B)
Commit

Lock(A)
Wait

Cascaded
aborts are
avoided!

Serializable Schedules: Redefined
 Two schedules are said to be equivalent if for any database

state, the effect of executing the 1st schedule is identical to
the effect of executing the 2nd schedule

 Previously: a serializable schedule is a schedule that is
equivalent to a serial schedule

 Now: a serializable schedule is a schedule that is equivalent
to a serial schedule over a set of committed transactions

 This definition captures serializability as well as recoverability

Next Class

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Continue…

	Database Applications (15-415)��DBMS Internals- Part XI�Lecture 19, April 2, 2014
	Today…
	DBMS Layers
	Outline
	Concurrent Execution of Programs
	Transactions
	Transactions (Cont’d)
	Schedules
	Serial Schedules
	Serializable Schedules
	Examples
	Examples: A Serial Schedule
	Examples: Another Serial Schedule
	Examples: A Serializable Schedule
	Comments
	Outline
	Anomalies
	Reading Uncommitted Data: WR Conflicts
	Reading Uncommitted Data: WR Conflicts
	Reading Uncommitted Data: WR Conflicts
	Reading Uncommitted Data: WR Conflicts
	Reading Uncommitted Data: WR Conflicts
	Reading Uncommitted Data: WR Conflicts
	Unrepeatable Reads: RW Conflicts
	Unrepeatable Reads: RW Conflicts
	Overwriting Uncommitted Data: �WW Conflicts
	Overwriting Uncommitted Data: �WW Conflicts
	Overwriting Uncommitted Data: �WW Conflicts
	Overwriting Uncommitted Data: �WW Conflicts
	Outline
	Locking Protocols
	Lock Managers
	Two-Phase Locking
	Two-Phase Locking
	Two-Phase Locking
	Two-Phase Locking
	Two-Phase Locking
	Two-Phase Locking
	Resolving RW Conflicts Using 2PL
	Resolving RW Conflicts Using 2PL
	Resolving WW Conflicts Using 2PL
	Resolving WW Conflicts Using 2PL
	Resolving WR Conflicts
	Resolving WR Conflicts
	Strict Two-Phase Locking
	Resolving WR Conflicts: Revisit
	Resolving WR Conflicts: Revisit
	2PL vs. Strict 2PL
	Performance of Locking
	Performance of Locking (Cont’d)
	Outline
	Schedules with Aborted Transactions
	Schedules with Aborted Transactions
	Schedules with Aborted Transactions
	Schedules with Aborted Transactions
	Schedules with Aborted Transactions
	Schedules with Aborted Transactions
	Serializable Schedules: Redefined
	Next Class

