Database Applications (15-415)

DBMS Internals- Part X Lecture 18, March 26, 2014

Mohammad Hammoud

Today...

• Last Session:

- DBMS Internals- Part VIII
 - Query Optimization
- Today's Session:
 - DBMS Internals- Part IX
 - Query Optimization (Cont'd)
- Announcements:
 - Project 3 is due on April 5th
 - Quiz 2 is on Thursday, April 3, at 5:00PM in Room 2051 (all material covered after the midterm)

جا مکۃ کارنیجی میلوں فی قطر Carnegie Mellon University Oatar

جا مہۃ کارنیدی ہیلوں فی قطر Carnegie Mellon University Qatar

Query Optimization Steps

- Step 1: Queries are parsed into internal forms (e.g., parse trees)
- Step 2: Internal forms are transformed into 'canonical forms' (syntactic query optimization)
- Step 3: A <u>subset</u> of alternative plans are enumerated
- Step 4: Costs for alternative plans are estimated
- Step 5: The query evaluation plan with the <u>least estimated</u> <u>cost</u> is picked

Outline

Query Evaluation Plans

Relational Algebra Equivalences

Estimating Plan Costs

Enumerating Plans

Nested Sub-Queries

Last

Session

Required Information to Estimate Plan Costs

- For each enumerated plan, we have to estimate its cost
- To estimate the cost of a query plan, the query optimizer examines the system catalog and retrieves:
 - Information about the types and lengths of fields
 - Statistics about the referenced relations
 - Access paths (indexes) available for relations
- In particular, the Schema and Statistics components in the Catalog Manager are inspected to find a good enough query evaluation plan

Cost-Based Query Sub-System: Revisit

Catalog Manager: The Schema Component

- What kind of information do we store at the Schema?
 - Information about tables (e.g., table names and integrity constraints) and attributes (e.g., attribute names and types)
 - Information about indices (e.g., index structures)
 - Information about users
- Where do we store such information?
 - In tables; hence, can be queried like any other tables
 - For example: Attribute_Cat (attr_name: string, rel_name: string; type: string; position: integer)

جامدة کارنیدی میلود فی قطر <mark>Carnegie Mellon University</mark> Qatar

Catalog Manager: The Statistics Component

What would you store at the Statistics component?

- NTuples(R): # records for table R
- NPages(R): # pages for R
- NKeys(I): # distinct key values for index I
- INPages(I): # pages for index I
- IHeight(I): # levels for I
- ILow(I), IHigh(I): range of values for I

• • • •

 Such statistics are important for estimating operation costs and result sizes

Estimating the Cost of a Plan

- The cost of a plan can be estimated by:
 - 1. Estimating *the cost of each operation* in the plan tree
 - Already covered last week (e.g., costs of various join algorithms)
 - 2. Estimating *the size of the result of each operation* in the plan tree
 - The output <u>size</u> and <u>order</u> of a child node affects the cost of its parent node

How can we estimate result sizes?

Estimating Result Sizes

Consider a query block, QB, of the form:

SELECT attribute list FROM R1, R2,, Rn WHERE term 1 AND ... AND term k

What is the maximum number of tuples generated by QB?

- NTuples (R1) × NTuples (R2) × × NTuples(Rn)
- Every term in the WHERE clause, however, eliminates some of the possible resultant tuples
 - A *reduction factor* can be associated with each term

جا مہۃ کارنیدی ہیلوں فی قطر Carnegie Mellon University Qatar

Estimating Result Sizes (Cont'd)

Consider a query block, QB, of the form:

SELECT attribute list FROM R1, R2,, Rn WHERE term 1 AND ... AND term k

- The *reduction factor (RF)* associated with each *term* reflects the impact of the *term* in reducing the result size
- Final (<u>estimated</u>) result cardinality = [NTuples (R1) × ... × NTuples(Rn)] × [RF(term 1) ×... × RF(term k)]
 - Implicit assumptions: terms are independent and distribution is uniform!

But, how can we compute reduction factors?

Approximating Reduction Factors

- Reduction factors (RFs) can be *approximated* using the statistics available in the DBMS's catalog
- For different <u>forms</u> of terms, RF is computed differently
 - Form 1: Column = Value
 - RF = 1/NKeys(I), if there is an index I on Column
 - Otherwise, RF = 1/10

Approximating Reduction Factors (Cont'd)

- For different forms of terms, RF is computed differently
 - Form 2: Column 1 = Column 2
 - RF = 1/MAX(NKeys(*I1*), NKeys(*I2*)), if there are indices *I1* and *I2* on *Column 1* and *Column 2*, respectively
 - Or: RF = 1/NKeys(I), if there is only 1 index on Column 1 or Column 2
 - Or: RF = 1/10, if neither Column 1 nor Column 2 has an index
 - Form 3: Column IN (List of Values)
 - RF equals to RF of "Column = Value" (i.e., Form 1) × # of elements in the List of Values

Carnegie Mellon University Qatar

Approximating Reduction Factors (Cont'd)

- For different forms of terms, RF is computed differently
 - Form 4: Column > Value
 - RF = (High(I) Value)/ (High(I) - Low(I)), if there is an index I on Column
 - Otherwise, RF equals to any fraction < 1/2

 Estimates can be improved considerably by maintaining more detailed statistics known as *histograms*

Distribution D

Uniform Distribution Approximating D

 Estimates can be improved considerably by maintaining more detailed statistics known as *histograms*

 Estimates can be improved considerably by maintaining more detailed statistics known as *histograms*

 We can do better if we divide the range of values into sub-ranges called buckets

Equiwidth histogram

 We can do better if we divide the range of values into sub-ranges called buckets

Equiwidth histogram

 We can do better if we divide the range of values into sub-ranges called buckets

Equidepth histogram

 We can do better if we divide the range of values into sub-ranges called buckets

10 q 8 7 Equal # of tuples per a bucket 6 5 3 2 2 3 4 5 6 7 8 9 10 11 12 13 14 Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5 Count=10 Count=10 Count=7 Count=9 Count=9

Equidepth histogram

Because, buckets with very frequently occurring values contain fewer slots; hence, the uniform distribution assumption is applied to a smaller range of values!

What about buckets with <u>mostly</u> infrequent values? *They are approximated less accurately!*

Outline

A Brief Primer on Query Optimization

Query Evaluation Plans

Relational Algebra Equivalences

Estimating Plan Costs

Enumerating Plans

Nested Sub-Queries

Enumerating Execution Plans

- Consider a query $Q = A \bowtie B \bowtie C \bowtie D$
- Here are 3 plans that are *equivalent*:

Enumerating Execution Plans

- Consider a query $Q = A \bowtie B \bowtie C \bowtie D$
- Here are 3 plans that are *equivalent*:

Why?

- There are two main reasons for concentrating only on leftdeep plans:
 - As the number of joins increases, the number of plans increases rapidly; hence, it becomes necessary to prune the space of alternative plans
 - Left-deep trees allows us to generate all *fully pipelined* plans
- Clearly, by adding details to left-deep trees (e.g., the join algorithm per each join), several query plans can be obtained
- The query optimizer enumerates all possible left-deep plans using typically a dynamic programming approach (later), estimates the cost of each plan, and selects the one with the lowest cost!

- In particular, the query optimizer enumerates:
 - 1. All possible left-deep orderings
 - 2. The different possible ways for evaluating each operator
 - 3. The different access paths for each relation
 - Assume the following query **Q**:

SELECT S.sname, B.bname, R.day FROM Sailors S, Reserves R, Boats B WHERE S.sid = R.sid AND R.bid = B.bid

- In particular, the query optimizer enumerates:
 - 1. All possible left-deep orderings

- In particular, the query optimizer enumerates:
 - 1. All possible left-deep orderings

- In particular, the query optimizer enumerates:
 - 1. All possible left-deep orderings
 - 2. The different possible ways for evaluating each operator

- In particular, the query optimizer enumerates:
 - 1. All possible left-deep orderings
 - 2. The different possible ways for evaluating each operator

- In particular, the query optimizer enumerates:
 - 1. All possible left-deep orderings
 - 2. The different possible ways for evaluating each operator
 - 3. The different access paths for each relation

- In particular, the query optimizer enumerates:
 - 1. All possible left-deep orderings
 - 2. The different possible ways for evaluating each operator
 - 3. The different access paths for each relation

- In particular, the query optimizer enumerates:
 - 1. All possible left-deep orderings
 - 2. The different possible ways for evaluating each operator
 - 3. The different access paths for each relation

Subsequently, estimate the cost of each plan using statistics collected and stored at the system catalog!

Let us now study a *dynamic programming algorithm* to effectively enumerate and estimate cost plans

Towards a Dynamic Programming Algorithm

- There are two main cases to consider:
 - CASE I: Single-Relation Queries
 - CASE II: Multiple-Relation Queries
- CASE I: Single-Relation Queries
 - Only selection, projection, grouping and aggregate operations are involved (i.e., no joins)
 - Every available access path is considered and the one with the least estimated cost is selected
 - The different operations are carried out together
 - E.g., if an index is used for a selection, projection can be done for each retrieved tuple, and the resulting tuples can be *pipelined* into an aggregate operation (if any)

CASE I: Single-Relation Queries-An Example

Consider the following SQL query Q:

SELECT S.rating, COUNT (*) FROM Sailors S WHERE S.rating > 5 AND S.age = 20 GROUP BY S.rating

Q can be expressed in a relational algebra tree as follows:

Consider the following SQL query Q:

SELECT S.rating, COUNT (*) FROM Sailors S WHERE S.rating > 5 AND S.age = 20 GROUP BY S.rating

- How can **Q** be evaluated?
 - Apply CASE I:
 - Every available access path *for Sailors* is considered and the one with the least estimated cost is selected
 - The selection and projection operations are carried out together

Consider the following SQL query Q:

SELECT S.rating, COUNT (*) FROM Sailors S WHERE S.rating > 5 AND S.age = 20 GROUP BY S.rating

Towards a Dynamic Programming Algorithm

- There are two main cases to consider:
 - CASE I: Single-Relation Queries
 - CASE II: Multiple-Relation Queries
- CASE II: Multiple-Relation Queries
 - Only consider left-deep plans
 - Apply a dynamic programming algorithm

Enumeration of Left-Deep Plans Using Dynamic Programming

- Enumerate using *N* passes (if *N* relations joined):
 - Pass 1:
 - For each relation, enumerate all plans (all *1*-relation plans)
 - Retain the cheapest plan per each relation
 - Pass 2:
 - Enumerate all 2-relation plans by considering each 1-relation plan retained in Pass 1 (as outer) and successively every other relation (as inner)
 - Retain the cheapest plan per each 1-relation plan

Pass N:

- Enumerate all *N*-relation plans by considering each (*N-1*)relation plan retained in Pass N-1 (as outer) and successively every other relation (as inner)
- Retain the cheapest plan per each (*N-1*)-relation plan
- Pick the cheapest N-relation plan

Enumeration of Left-Deep Plans Using Dynamic Programming (*Cont'd*)

- An N-1 way plan is not combined with an additional relation unless:
 - There is a join condition between them
 - All predicates in the WHERE clause have been used up
- ORDER BY, GROUP BY, and aggregate functions are handled as a final step, using either an `interestingly ordered' plan or an additional sorting operator
- In spite of pruning plan space, this approach is *still exponential* in the # of tables

CASE II: Multiple-Relation Queries-An Example

Consider the following relational algebra tree:

Assume the following:

<u>Sailors:</u>
B+ tree on *rating*Hash on *sid*<u>Reserves:</u>
B+ tree on *bid*

CASE II: Multiple-Relation Queries-An Example

Pass 1:

- Sailors:
 - B+ tree matches rating>5, and is *probably* the cheapest
 - If this selection is expected to retrieve a lot of tuples, and the index is un-clustered, file scan might be cheaper!
- Reserves: B+ tree on bid matches bid=500; probably the cheapest

CASE II: Multiple-Relation Queries-An Example

Pass 2:

- Consider each plan retained from
 Pass 1 as the outer, and join it effectively with every other relation
- E.g., **Reserves** as outer:
 - Hash index can be used to get Sailors tuples that satisfy sid = outer tuple's sid value

- <u>Sailors:</u>
 - B+ tree on *rating*
 - Hash on sid
- <u>Reserves:</u>
 - B+ tree on bid

Outline

A Brief Primer on Query Optimization

Query Evaluation Plans

Relational Algebra Equivalences

Estimating Plan Costs

Enumerating Plans

Nested Sub-Queries

جامعۃ دارنیجی میلوں فی قطر Carnegie Mellon University Qatar

Nested Sub-queries

Consider the following nested query Q1:

SELECT S.sname FROM Sailors S WHERE S.rating = (SELECT MAX (S2.rating) FROM Sailors S2)

- The nested sub-query can be evaluated *just once*, yielding a <u>single</u> value V
- V can be incorporated into the top-level query as if it had been part of the original statement of Q1

Nested Sub-queries

• Now, consider the following nested query **Q2**:

SELECT S.sname FROM Sailors S WHERE EXISTS (SELECT R.sid FROM Reserves R WHERE R.bid=103)

- The nested sub-query can still be evaluated just once, but it will yield a <u>collection</u> of sids
- Every sid value in Sailors must be checked whether it exists in the collection of sids returned by the nested sub-query
 - This entails a join, and the full range of join methods can be explored!

Nested Sub-queries

Now, consider another nested query Q3:

- Q3 is *correlated*; hence, we "cannot" evaluate the sub-query just once!
- In this case, the typical evaluation strategy is to evaluate the nested sub-query <u>for each tuple</u> of Sailors

The common approach, indeed, is to *always* do nested loops join!

Summary

- Query optimization is a crucial task in a relational DBMSs
- We must understand query optimization in order to understand the performance impact of a given database design (relations, indexes) on a workload (set of queries)
- Two parts to optimizing a query:
 - 1. Consider a set of alternative plans (e.g., using dynamic programming)
 - Apply selections/projections as early as possible
 - Prune search space; typically, keep left-deep plans only
 - 2. Estimate the cost of each plan that is considered
 - Must estimate size of result and cost of each tree node
 - Key issues: Statistics, indexes, operator implementations

جامعۃ کارنیدی میلود فی قطر Carnegie Mellon University Qatar