
Database Applications (15-415)

DBMS Internals- Part X
Lecture 18, March 26, 2014

Mohammad Hammoud

Today…
 Last Session:

 DBMS Internals- Part VIII
 Query Optimization

 Today’s Session:

 DBMS Internals- Part IX
 Query Optimization (Cont’d)

 Announcements:

 Project 3 is due on April 5th

 Quiz 2 is on Thursday, April 3, at 5:00PM
in Room 2051 (all material covered after the midterm)

DBMS Layers

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Continue…

Query Optimization Steps

 Step 1: Queries are parsed into internal forms
(e.g., parse trees)

 Step 2: Internal forms are transformed into ‘canonical forms’
(syntactic query optimization)

 Step 3: A subset of alternative plans are enumerated

 Step 4: Costs for alternative plans are estimated

 Step 5: The query evaluation plan with the least estimated
cost is picked

Outline

A Brief Primer on Query Optimization

Query Evaluation Plans

Relational Algebra Equivalences

Estimating Plan Costs

Enumerating Plans

Nested Sub-Queries

Last
Session

Required Information to Estimate
Plan Costs

 For each enumerated plan, we have to estimate its cost

 To estimate the cost of a query plan, the query optimizer
examines the system catalog and retrieves:
 Information about the types and lengths of fields

 Statistics about the referenced relations

 Access paths (indexes) available for relations

 In particular, the Schema and Statistics components in the
Catalog Manager are inspected to find a good enough
query evaluation plan

Cost-Based Query Sub-System: Revisit

Query Parser

Query Optimizer

Plan

Generator

Plan Cost

Estimator

Query Plan Evaluator

Catalog Manager

Usually there is a
heuristics-based
rewriting step before
the cost-based steps.

Schema Statistics

Select *

From Blah B

Where B.blah = blah
Queries

Catalog Manager:
The Schema Component

 What kind of information do we store at the Schema?

 Information about tables (e.g., table names and
integrity constraints) and attributes (e.g., attribute
names and types)

 Information about indices (e.g., index structures)

 Information about users

 Where do we store such information?

 In tables; hence, can be queried like any other tables

 For example: Attribute_Cat (attr_name: string,
rel_name: string; type: string; position: integer)

Catalog Manager:
The Statistics Component

 What would you store at the Statistics component?
 NTuples(R): # records for table R

 NPages(R): # pages for R

 NKeys(I): # distinct key values for index I

 INPages(I): # pages for index I

 IHeight(I): # levels for I

 ILow(I), IHigh(I): range of values for I

 ...

 Such statistics are important for estimating
operation costs and result sizes

Estimating the Cost of a Plan

 The cost of a plan can be estimated by:

1. Estimating the cost of each operation in the
plan tree

 Already covered last week (e.g., costs of various
join algorithms)

2. Estimating the size of the result of each operation in
the plan tree

 The output size and order of a child node affects the
cost of its parent node

How can we estimate result sizes?

Estimating Result Sizes

 Consider a query block, QB, of the form:

 What is the maximum number of tuples generated by QB?

 NTuples (R1) × NTuples (R2) × …. × NTuples(Rn)

 Every term in the WHERE clause, however, eliminates some
of the possible resultant tuples

 A reduction factor can be associated with each term

SELECT attribute list

FROM R1, R2, …., Rn

WHERE term 1 AND ... AND term k

Estimating Result Sizes (Cont’d)

 Consider a query block, QB, of the form:

 The reduction factor (RF) associated with each term reflects

the impact of the term in reducing the result size

 Final (estimated) result cardinality = [NTuples (R1) × ... ×
NTuples(Rn)] × [RF(term 1) ×... × RF(term k)]
 Implicit assumptions: terms are independent and distribution

is uniform!

SELECT attribute list

FROM R1, R2, …., Rn

WHERE term 1 AND ... AND term k

But, how can we compute reduction factors?

Approximating Reduction Factors

 Reduction factors (RFs) can be approximated using the
statistics available in the DBMS’s catalog

 For different forms of terms, RF is computed differently

 Form 1: Column = Value

 RF = 1/NKeys(I), if there is
an index I on Column

 Otherwise, RF = 1/10

grade

count

A F
NKeys(I)

E.g., grade = ‘B’

Approximating Reduction Factors (Cont’d)

 For different forms of terms, RF is computed differently

 Form 2: Column 1 = Column 2

 RF = 1/MAX(NKeys(I1), NKeys(I2)), if there are indices I1
and I2 on Column 1 and Column 2, respectively

 Or: RF = 1/NKeys(I), if there is only 1 index on Column 1 or
Column 2

 Or: RF = 1/10, if neither Column 1 nor Column 2 has
an index

 Form 3: Column IN (List of Values)

 RF equals to RF of “Column = Value” (i.e., Form 1) × # of
elements in the List of Values

Approximating Reduction Factors (Cont’d)

 For different forms of terms, RF is computed differently

 Form 4: Column > Value

 RF = (High(I) – Value)/
(High(I) – Low(I)), if there
is an index I on Column

 Otherwise, RF equals to
any fraction < 1/2

grade

count

A F

E.g., grade >= ‘C’

Improved Statistics: Histograms

 Estimates can be improved considerably by maintaining
more detailed statistics known as histograms

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Distribution D

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Uniform Distribution Approximating D

Improved Statistics: Histograms

 Estimates can be improved considerably by maintaining
more detailed statistics known as histograms

Distribution D

What is the result size of term value > 13?

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

8 tuples

Improved Statistics: Histograms

 Estimates can be improved considerably by maintaining
more detailed statistics known as histograms

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Uniform Distribution Approximating D
What is the (estimated) result size of

term value > 13?

(1/15 × 44) = ~3 tuples

Clearly, this is
inaccurate!

Improved Statistics: Histograms

 We can do better if we divide the range of values into
sub-ranges called buckets

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket 1

Count=8

Bucket 2

Count=4

Bucket 3

Count=15

Bucket 4

Count=3

Bucket 5

Count=15

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket 1

Count=9

Bucket 2

Count=10

Bucket 3

Count=10

Bucket 4

Count=7

Bucket 5

Count=9

Equidepth histogram Equiwidth histogram

Uniform distribution per a bucket

Equal # of tuples per a bucket

Improved Statistics: Histograms

 We can do better if we divide the range of values into
sub-ranges called buckets

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket 1

Count=8

Bucket 2

Count=4

Bucket 3

Count=15

Bucket 4

Count=3

Bucket 5

Count=15

Equiwidth histogram

 The selected range = 1/3 of the range for bucket 5
 Bucket 5 represents a total of 15 tuples
 Estimated size = 1/3 × 15 = 5 tuples

Better than
regular

histograms!

What is the (estimated) result size of
term value > 13?

Uniform distribution per a bucket

Improved Statistics: Histograms

 We can do better if we divide the range of values into
sub-ranges called buckets

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket 1

Count=9

Bucket 2

Count=10

Bucket 3

Count=10

Bucket 4

Count=7

Bucket 5

Count=9

Equidepth histogram
What is the (estimated) result size of

term value > 13?

 The selected range = 100% of the range for
bucket 5

 Bucket 5 represents a total of 9 tuples
 Estimated size = 1 × 9 = 9 tuples

Better than
equiwidth

histograms!

Equal # of tuples per a bucket

Why?

Improved Statistics: Histograms

 We can do better if we divide the range of values into
sub-ranges called buckets

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket 1

Count=9

Bucket 2

Count=10

Bucket 3

Count=10

Bucket 4

Count=7

Bucket 5

Count=9

Equidepth histogram
Because, buckets with very
frequently occurring values

contain fewer slots; hence, the
uniform distribution assumption

is applied to a smaller range
of values!

What about buckets with mostly
infrequent values?

They are approximated
less accurately!

Equal # of tuples per a bucket

Outline

A Brief Primer on Query Optimization

Query Evaluation Plans

Relational Algebra Equivalences

Estimating Plan Costs

Enumerating Plans

Nested Sub-Queries

Enumerating Execution Plans

 Consider a query Q =

 Here are 3 plans that are equivalent:

DCBA

C D B A B A

C

D

B A

C

D

Linear Trees A Bushy Tree

Left-Deep Tree

Enumerating Execution Plans

 Consider a query Q =

 Here are 3 plans that are equivalent:

DCBA

C D B A B A

C

D

B A

C

D

Why?

Enumerating Execution Plans (Cont’d)
 There are two main reasons for concentrating only on left-

deep plans:
 As the number of joins increases, the number of plans

increases rapidly; hence, it becomes necessary to prune the
space of alternative plans

 Left-deep trees allows us to generate all fully pipelined plans

 Clearly, by adding details to left-deep trees (e.g., the join
algorithm per each join), several query plans can
be obtained

 The query optimizer enumerates all possible left-deep
plans using typically a dynamic programming approach
(later), estimates the cost of each plan, and selects the one
with the lowest cost!

Enumerating Execution Plans (Cont’d)

 In particular, the query optimizer enumerates:

1. All possible left-deep orderings

2. The different possible ways for evaluating each operator

3. The different access paths for each relation

 Assume the following query Q:

SELECT S.sname, B.bname, R.day

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid

Enumerating Execution Plans (Cont’d)

 In particular, the query optimizer enumerates:

1. All possible left-deep orderings

R S

B

S R

B

B R

S

R B

S

B S

R x

S B

R x

Enumerating Execution Plans (Cont’d)

 In particular, the query optimizer enumerates:

1. All possible left-deep orderings

R S

B

B S

R

S R

B

B R

S

R B

S
x

S B

R x

Prune plans with cross-products immediately!

Enumerating Execution Plans (Cont’d)

 In particular, the query optimizer enumerates:

1. All possible left-deep orderings

2. The different possible ways for evaluating each operator

R S

B

R S

B

HJ

HJ

R S

B

HJ

NLJ

R S

B

NLJ

HJ

R S

B

NLJ

NLJ

Enumerating Execution Plans (Cont’d)

 In particular, the query optimizer enumerates:

1. All possible left-deep orderings

2. The different possible ways for evaluating each operator

R S

B

R S

B

HJ

HJ

R S

B

HJ

NLJ

R S

B

NLJ

HJ

R S

B

NLJ

NLJ

+ do same for
the 3 other plans

Enumerating Execution Plans (Cont’d)

 In particular, the query optimizer enumerates:

1. All possible left-deep orderings

2. The different possible ways for evaluating each operator

3. The different access paths for each relation

R S

B

NLJ

NLJ

R S

B

NLJ

NLJ

(heap scan)

(heap scan)

(heap scan)

R S

B

NLJ

NLJ

(INDEX scan on R.bid)

(heap scan)

(heap scan)

Enumerating Execution Plans (Cont’d)

 In particular, the query optimizer enumerates:

1. All possible left-deep orderings

2. The different possible ways for evaluating each operator

3. The different access paths for each relation

+ do same for
the 3 other plans

R S

B

NLJ

NLJ

R S

B

NLJ

NLJ

(heap scan)

(heap scan)

(heap scan)

R S

B

NLJ

NLJ

(INDEX scan on R.bid)

(heap scan)

(heap scan)

Enumerating Execution Plans (Cont’d)

 In particular, the query optimizer enumerates:

1. All possible left-deep orderings

2. The different possible ways for evaluating each operator

3. The different access paths for each relation

Subsequently, estimate the cost of each plan using
statistics collected and stored at the system catalog!

Let us now study a dynamic programming algorithm
to effectively enumerate and estimate cost plans

Towards a Dynamic Programming Algorithm

 There are two main cases to consider:
 CASE I: Single-Relation Queries

 CASE II: Multiple-Relation Queries

 CASE I: Single-Relation Queries
 Only selection, projection, grouping and aggregate operations

are involved (i.e., no joins)

 Every available access path is considered and the one with the
least estimated cost is selected

 The different operations are carried out together
 E.g., if an index is used for a selection, projection can be done

for each retrieved tuple, and the resulting tuples can be
pipelined into an aggregate operation (if any)

CASE I: Single-Relation Queries-
An Example

 Consider the following SQL query Q:

 Q can be expressed in a relational algebra tree as follows:

SELECT S.rating, COUNT (*)

FROM Sailors S

WHERE S.rating > 5 AND S.age = 20
GROUP BY S.rating

Sailors

age = 20 rating > 5

rating, COUNT(*)

GROUP BYrating

rating

CASE I: Single-Relation Queries-
An Example

 Consider the following SQL query Q:

 How can Q be evaluated?

 Apply CASE I:

 Every available access path for Sailors is considered
and the one with the least estimated cost is selected

 The selection and projection operations are carried
out together

SELECT S.rating, COUNT (*)

FROM Sailors S

WHERE S.rating > 5 AND S.age = 20
GROUP BY S.rating

Sailors

age = 20 rating > 5

rating, COUNT(*)

GROUP BYrating

rating

CASE I: Single-Relation Queries-
An Example

 Consider the following SQL query Q:

 What would be the cost of we assume a file scan for sailors?

SELECT S.rating, COUNT (*)

FROM Sailors S

WHERE S.rating > 5 AND S.age = 20
GROUP BY S.rating

Sailors

age = 20 rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(Scan; Write
to Temp T1)

Sailors

age = 20 rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a file scan for sailors?

(Scan; Write
to Temp T1)

Sailors

age = 20 rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

NPages(Sailors)

×
Size of T1 tuple/Size of Sailors tuple

Reduction Factor (RF) of S.age

×

NPages(Sailors)

+

Reduction Factor (RF) of S.rating

×

CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a file scan for sailors?

(Scan; Write
to Temp T1)

Sailors

age = 20 rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

Term of Form 4
(default < 1/2)

Term of Form 1
(default = 1/10)

NPages(Sailors)

×
Size of T1 tuple/Size of Sailors tuple

Reduction Factor (RF) of S.age

×

NPages(Sailors)

+

Reduction Factor (RF) of S.rating

×

CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a file scan for sailors?

(Scan; Write
to Temp T1)

Sailors

age = 20 rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

Term of Form 4
(default < 1/2)

Term of Form 1
(default = 1/10)

NPages(Sailors) = 500 I/Os

×
Size of T1 tuple/Size of Sailors tuple = 0.25

Reduction Factor (RF) of S.age = 0.1

×

NPages(Sailors) = 500 I/Os

+

Reduction Factor (RF) of S.rating = 0.2

×

502.5 I/Os

=

CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a file scan for sailors?

(Scan; Write
to Temp T1)

Sailors

age = 20 rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

3 × NPages(T1) = 3 × 2.5 = 7.5 I/Os

CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a file scan for sailors?

(Scan; Write
to Temp T1)

Sailors

age = 20 rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

7.5 I/Os

502.5 I/Os

510 I/Os

CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a clustered index on
rating with A(1)?

(Index; Write
to Temp T1)

Sailors

age = 20 rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly) Cost of retrieving the index entries

+
Cost of retrieving the corresponding

Sailors tuples

Cost of writing out T1

+

CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a clustered index on
rating with A(1)?

(Index; Write
to Temp T1)

Sailors

age = 20 rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

Term of Form 4

RF = (High(I) – Value)/
(High(I) – Low(I)) = (10 – 5)/10 = 0.5

Term of Form 1. Can be applied
to each retrieved tuple.

Cost of retrieving the index entries

+
Cost of retrieving the corresponding

Sailors tuples

Cost of writing out T1

+

CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a clustered index on
rating with A(1)?

(Index; Write
to Temp T1)

Sailors

age = 20 rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

Term of Form 4

RF = (High(I) – Value)/
(High(I) – Low(I)) = (10 – 5)/10 = 0.5

Term of Form 1. Can be applied
to each retrieved tuple.

Cost of retrieving the index entries

+
Cost of retrieving the corresponding

Sailors tuples

= 0.5 × 0.1 × NPages(I)
= 0.5 × 0.1 × 600
= 30 I/Os

=

CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a clustered index on
rating with A(1)?

(Index; Write
to Temp T1)

Sailors

age = 20 rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

Term of Form 4

RF = (High(I) – Value)/
(High(I) – Low(I)) = (10 – 5)/10 = 0.5

Term of Form 1. Can be applied
to each retrieved tuple.

Cost of retrieving the index entries

+
Cost of retrieving the corresponding

Sailors tuples

Cost of writing out T1

+

2 × 30 = 60 I/Os

=

CASE I: Single-Relation Queries-
An Example

 What would be the cost of we assume a clustered index on
rating with A(1)?

(Index; Write
to Temp T1)

Sailors

age = 20 rating > 5

rating, COUNT(*)

GROUP BYrating

rating

(External Sorting)

(on-the-fly)

(on-the-fly)

2 × 30 = 60 I/Os

~7.5 I/Os

67.5 I/Os (as opposed to
510 I/Os with a file scan)

Towards a Dynamic Programming Algorithm

 There are two main cases to consider:

 CASE I: Single-Relation Queries

 CASE II: Multiple-Relation Queries

 CASE II: Multiple-Relation Queries

 Only consider left-deep plans

 Apply a dynamic programming algorithm

Enumeration of Left-Deep Plans Using
Dynamic Programming

 Enumerate using N passes (if N relations joined):
 Pass 1:

 For each relation, enumerate all plans (all 1-relation plans)
 Retain the cheapest plan per each relation

 Pass 2:
 Enumerate all 2-relation plans by considering each 1-relation

plan retained in Pass 1 (as outer) and successively every other
relation (as inner)

 Retain the cheapest plan per each 1-relation plan
 Pass N:

 Enumerate all N-relation plans by considering each (N-1)-
relation plan retained in Pass N-1 (as outer) and successively
every other relation (as inner)

 Retain the cheapest plan per each (N-1)-relation plan
 Pick the cheapest N-relation plan

Enumeration of Left-Deep Plans Using
Dynamic Programming (Cont’d)

 An N-1 way plan is not combined with an additional
relation unless:
 There is a join condition between them

 All predicates in the WHERE clause have been used up

 ORDER BY, GROUP BY, and aggregate functions are
handled as a final step, using either an `interestingly
ordered’ plan or an additional sorting operator

 In spite of pruning plan space, this approach is still
exponential in the # of tables

CASE II: Multiple-Relation Queries-
An Example

 Consider the following relational algebra tree:

 Assume the following:

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

- Sailors:
 - B+ tree on rating
 - Hash on sid
- Reserves:
 - B+ tree on bid

CASE II: Multiple-Relation Queries-
An Example

 Pass 1:

 Sailors:

 B+ tree matches rating>5,
and is probably the cheapest

 If this selection is expected to
retrieve a lot of tuples, and
the index is un-clustered,
file scan might be cheaper!

 Reserves: B+ tree on bid matches
bid=500; probably the cheapest

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

- Sailors:
 - B+ tree on rating
 - Hash on sid
- Reserves:
 - B+ tree on bid

CASE II: Multiple-Relation Queries-
An Example

 Pass 2:

 Consider each plan retained from
Pass 1 as the outer, and join it effectively
with every other relation

 E.g., Reserves as outer:

 Hash index can be used to get
Sailors tuples that satisfy
sid = outer tuple’s sid value

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

- Sailors:
 - B+ tree on rating
 - Hash on sid
- Reserves:
 - B+ tree on bid

Outline

A Brief Primer on Query Optimization

Query Evaluation Plans

Relational Algebra Equivalences

Estimating Plan Costs

Enumerating Plans

Nested Sub-Queries

Nested Sub-queries

 Consider the following nested query Q1:

 The nested sub-query can be evaluated just once,
yielding a single value V

 V can be incorporated into the top-level query as if it
had been part of the original statement of Q1

SELECT S.sname

FROM Sailors S

WHERE S.rating =
 (SELECT MAX (S2.rating)

 FROM Sailors S2)

Nested Sub-queries

 Now, consider the following nested query Q2:

 The nested sub-query can still be evaluated just once, but it
will yield a collection of sids

 Every sid value in Sailors must be checked whether it exists in
the collection of sids returned by the nested sub-query
 This entails a join, and the full range of join methods can be explored!

SELECT S.sname

FROM Sailors S

WHERE EXISTS
 (SELECT R.sid

 FROM Reserves R

 WHERE R.bid=103)

Nested Sub-queries
 Now, consider another nested query Q3:

 Q3 is correlated; hence, we “cannot” evaluate the sub-query
just once!

 In this case, the typical evaluation strategy is to evaluate the
nested sub-query for each tuple of Sailors

SELECT S.sname

FROM Sailors S

WHERE EXISTS
 (SELECT *

 FROM Reserves R

 WHERE R.bid=103

 AND R.sid=S.sid)

The common approach, indeed, is to always do nested loops join!

Summary
 Query optimization is a crucial task in a relational DBMSs

 We must understand query optimization in order to understand
the performance impact of a given database design (relations,
indexes) on a workload (set of queries)

 Two parts to optimizing a query:

1. Consider a set of alternative plans (e.g., using dynamic
programming)

 Apply selections/projections as early as possible

 Prune search space; typically, keep left-deep plans only

2. Estimate the cost of each plan that is considered

 Must estimate size of result and cost of each tree node

 Key issues: Statistics, indexes, operator implementations

Next Class

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

