
Database Applications (15-415)

DBMS Internals- Part IX
Lecture 17, March 24, 2014

Mohammad Hammoud

Today…
 Last Session:

 DBMS Internals- Part VIII
 Algorithms for Relational Operations (Cont’d)

 Today’s Session:
 DBMS Internals- Part IX

 Query Optimization

 Announcements:
 Project 3 is due on April 5th
 Final exam is on Sunday, April 27, at 9:00AM

in Room 2051 (all material included- open book,
open notes)

DBMS Layers

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Outline

A Brief Primer on Query Optimization

Query Evaluation Plans

Relational Algebra Equivalences

Estimating Plan Costs

Enumerating Plans



Cost-Based Query Sub-System

Query Parser

Query Optimizer

Plan

Generator

Plan Cost

Estimator

Query Plan Evaluator

Catalog Manager

Usually there is a
heuristics-based
rewriting step before
the cost-based steps.

Schema Statistics

Select *

From Blah B

Where B.blah = blah
Queries

Query Optimization Steps

 Step 1: Queries are parsed into internal forms
(e.g., parse trees)

 Step 2: Internal forms are transformed into ‘canonical forms’
(syntactic query optimization)

 Step 3: A subset of alternative plans are enumerated

 Step 4: Costs for alternative plans are estimated

 Step 5: The query evaluation plan with the least estimated
cost is picked

The Query Optimizer

 A given query can be evaluated in many ways

 The performance difference between the best and
worst ways can be several orders of magnitude

 The query optimizer is responsible for identifying an
efficient query plan

 It is unrealistic to expect an optimizer to find the very
best plan; it is more important to avoid the worst plans
and find a good plan

Outline

A Brief Primer on Query Optimization

Query Evaluation Plans

Relational Algebra Equivalences

Estimating Plan Costs

Enumerating Plans



Query Evaluation Plans

 A query evaluation plan (or simply a plan) consists of an
extended relational algebra tree (or simply a tree)

 A plan tree consists of annotations at each node indicating:

 The access methods to use for each relation

 The implementation method to use for each operator

 Consider the following SQL query Q:

SELECT S.sname

FROM Reserves R, Sailors S

WHERE R.sid=S.sid AND

 R.bid=100 AND S.rating>5

What is the
corresponding

RA of Q?

Query Evaluation Plans (Cont’d)

 Q can be expressed in relational algebra as follows:

)(Re
5100

(Sailors
sidsid

serves
ratingbidsname 



Reserves Sailors

sid=sid

bid=100 rating > 5

sname

A RA Tree:

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

An Extended RA Tree:

(File Scan) (File Scan)

Pipelining vs. Materializing

 When a query is composed of several operators, the
result of one operator can sometimes be pipelined to
another operator

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

(File Scan) (File Scan)

Pipeline the output of the join into the
selection and projection that follow

Applied on-the-fly

Pipelining vs. Materializing

 When a query is composed of several operators, the
result of one operator can sometimes be pipelined to
another operator

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

(File Scan) (File Scan)

Pipeline the output of the join into the
selection and projection that follow

Applied on-the-fly

In contrast, a temporary table can be materialized
to hold the intermediate result of the join and read
back by the selection operation!

Pipelining can significantly save I/O cost!

The I/O Cost of the Q Plan

 What is the I/O cost of the following evaluation plan?

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

(File Scan) (File Scan)

 The cost of the join is 1000 + 1000 * 500 = 501,000 I/Os (assuming page-oriented
Simple NL join)

 The selection and projection are done on-the-fly; hence, do not incur additional I/Os

Pushing Selections

 How can we reduce the cost of a join?

 By reducing the sizes of the input relations!

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Involves bid in Reserves;
hence, “push” ahead of the join!

Involves rating in Sailors;
hence, “push” ahead of the join!

Pushing Selections

 How can we reduce the cost of a join?

 By reducing the sizes of the input relations!

Reserves Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

(File Scan) (File Scan)

The I/O Cost of the New Q Plan

 What is the I/O cost of the following evaluation plan?

Reserves Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Cost of Scanning Reserves = 1000 I/Os
Cost of Writing T1 = 10* I/Os (later)

Cost of Scanning Sailors = 500 I/Os
Cost of Writing T2 = 250* I/Os (later)

*Assuming 100 boats and uniform distribution of reservations across boats.

*Assuming 10 ratings and uniform distribution over ratings.

The I/O Cost of the New Q Plan

 What is the I/O cost of the following evaluation plan?

Reserves Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)
Cost = 2×4×250 = 2000 I/Os

(assuming B = 5)
Cost = 2×2×10 = 40 I/Os

(assuming B = 5)

Merge Cost = 10 + 250 = 260 I/Os

The I/O Cost of the New Q Plan

 What is the I/O cost of the following evaluation plan?

Reserves Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Done on-the-fly, thus, do
not incur additional I/Os

The I/O Cost of the New Q Plan

 What is the I/O cost of the following evaluation plan?

Reserves Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Cost of Scanning Reserves = 1000 I/Os
Cost of Writing T1 = 10 I/Os (later)

Cost of Scanning Sailors = 500 I/Os
Cost of Writing T2 = 250 I/Os (later)

Cost = 2×4×250 = 2000 I/Os
(assuming B = 5)

Cost = 2×2×10 = 40 I/Os
(assuming B = 5)

Merge Cost = 10 + 250 = 260 I/Os

Total Cost = 1000 + 10 + 500 + 250 + 40 + 2000 + 260 = 4060 I/Os

Done on-the-fly, thus, do
not incur additional I/Os

The I/O Costs of the Two Q Plans

Total Cost = 501, 000 I/Os

Reserves Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

(File Scan) (File Scan)

Total Cost = 4060 I/Os

Pushing Projections

 How can we reduce the cost of a join?

 By reducing the sizes of the input relations!

 Consider (again) the following plan:

Reserves Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

 What are the attributes required
in the final result?
 Sid of T1
 Sid and sname of T2

Hence, as we scan Reserves and
Sailors we can also remove

unwanted columns (i.e., “Push” the
projections ahead of the join)!

Pushing Projections

 How can we reduce the cost of a join?

 By reducing the sizes of the input relations!

 Consider (again) the following plan:

Reserves Sailors

sid=sid

bid=100

sname

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

 What are the attributes required
from T1 and T2?
 Sid from T1
 Sid and sname from T2

Hence, as we scan Reserves and
Sailors we can also remove

unwanted columns (i.e., “Push” the
projections ahead of the join)!

Pushing Projections

 How can we reduce the cost of a join?

 By reducing the sizes of the input relations!

 Consider (again) the following plan:

Reserves Sailors

sid=sid

bid=100

sname

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

The cost after applying
this heuristic can become
2000 I/Os (as opposed to

4060 I/Os with only
pushing the selection)!

“Push” ahead
the join

 What if indexes are available on Reserves and Sailors?

Using Indexes

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

(Hash index on sid)

(Clustered hash index on bid)

 With clustered index on bid of Reserves, we get 100,000/100 = 1000 tuples (assuming 100
boats and uniform distribution of reservations across boats)

 Since, the index is clustered, the 1000 tuples appear consecutively within the same
bucket; thus # of pages = 1000/100 = 10 pages

Using Indexes

 What if indexes are available on Reserves and Sailors?

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

(Hash index on sid)

(Clustered hash index on bid)

 For each selected Reserves tuple, we can retrieve matching Sailors tuples using the hash
index on the sid field

 Selected Reserves tuples need not be materialized and the join result can be pipelined!
 For each tuple in the join result, we apply rating > 5 and the projection of sname on-the-fly

Using Indexes

 What if indexes are available on Reserves and Sailors?

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

(Hash index on sid)

(Clustered hash index on bid)

Is it necessary to project out
unwanted columns?

NO, since selection results
are NOT materialized

Using Indexes

 What if indexes are available on Reserves and Sailors?

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

(Hash index on sid)

(Clustered hash index on bid)

Does the hash index on sid
need to be clustered?

NO, since there is at most
1 matching Sailors tuple
per a Reserves tuple! Why?

Using Indexes

 What if indexes are available on Reserves and Sailors?

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

(Hash index on sid)

(Clustered hash index on bid)

Cost = 1.2 I/Os (if
A(1)) or 2.2 (if A(2))

Using Indexes

 What if indexes are available on Reserves and Sailors?

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

(Hash index on sid)

(Clustered hash index on bid)

Why not pushing this selection
ahead of the join?

It would require a scan on Sailors!

 What is the I/O cost of the following evaluation plan?

The I/O Cost of the New Q Plan

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

(Hash index on sid)

(Clustered hash index on bid)

10 I/Os

Cost = 1.2 I/Os for
1000 Reserves
tuples; hence,
1200 I/Os

Total Cost = 10 + 1200 = 1210 I/Os

Comparing I/O Costs: Recap

Total Cost = 501, 000 I/Os

Reserves Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

(File Scan) (File Scan)

Total Cost = 4060 I/Os

But, How Can we Ensure Correctness?

Canonical form

Still the same result!

How can this be guaranteed?

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Reserves

Sailors

sid=sid

bid=100

sname

rating > 5

Outline

A Brief Primer on Query Optimization

Query Evaluation Plans

Relational Algebra Equivalences

Estimating Plan Costs

Enumerating Plans



Relational Algebra Equivalences

 A relational query optimizer uses relational algebra
equivalences to identify many equivalent expressions for a
given query

 Two relational algebra expressions over the same set of
input relations are said to be equivalent if they produce the
same result on all relations’ instances

 Relational algebra equivalences allow us to:

 Push selections and projections ahead of joins

 Combine selections and cross-products into joins

 Choose different join orders

RA Equivalences: Selections

 Two important equivalences involve selections:

1. Cascading of Selections:

2. Commutation of Selections:

      c cn c cnR R1 1  ... . . .

        c c c cR R1 2 2 1

Allows us to combine several selections into one selection

OR: Allows us to replace a selection with several smaller selections

Allows us to test selection conditions in either order

RA Equivalences: Projections

 One important equivalence involves projections:

 Cascading of Projections:

This says that successively eliminating columns from a relation
is equivalent to simply eliminating all but the columns retained

by the final projection!

     RR anaa  ...11 

RA Equivalences: Cross-Products and Joins

 Two important equivalences involve cross-products
and joins:

1. Commutative Operations:

This allows us to choose which relation to be the inner and
which to be the outer!

(R × S) (S × R) 

(R S) (S R)  

RA Equivalences: Cross-Products and Joins

 Two important equivalences involve cross-products
and joins:

2. Associative Operations:

This says that regardless of the order in which the relations are
considered, the final result is the same!

R × (S × T) (R × S) × T 

R (S T) (R S) T   

R (S T) (T R) S    It follows:

This order-independence is fundamental to how a query optimizer
generates alternative query evaluation plans

RA Equivalences: Selections, Projections,
Cross Products and Joins

 Selections with Projections:

 Selections with Cross-Products:

This says we can commute a selection with a projection if the
selection involves only attributes retained by the projection!

))(())((RR acca  

R T c)(SRc 

This says we can combine a selection with a cross-product to
form a join (as per the definition of a join)!

RA Equivalences: Selections, Projections,
Cross Products and Joins

 Selections with Cross-Products and with Joins:

SRcSRc )()(

This says we can commute a selection with a cross-product or a join
if the selection condition involves only attributes of one of the

arguments to the cross-product or join!

SRcSRc )()( 

Caveat: The attributes mentioned in c must appear only in R and
NOT in S

RA Equivalences: Selections, Projections,
Cross Products and Joins

 Selections with Cross-Products and with Joins (Cont’d):

)(
321

)(SR
ccc

SRc 


 

This says we can push part of the selection condition c ahead of
the cross-product!

)))(
3

(
2

(
1

SR
ccc

 

))(
3

)(
2

(
1

S
c

R
cc

 

This applies to joins as well!

RA Equivalences: Selections, Projections,
Cross Products and Joins

 Projections with Cross-Products and with Joins:

)(
2

)(
1

)(S
a

R
a

SRa  

Intuitively, we need to retain only those attributes of R and S that
are either mentioned in the join condition c or included in the set

of attributes a retained by the projection

)(
2

)(
1

)(S
acR

a
ScRa   

))(
2

)(
1

()(S
acR

aaScRa   

How to Estimate the Cost of Plans?

 Now that correctness is ensured, how can the DBMS
estimate the costs of various plans?

Canonical form

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Reserves

Sailors

sid=sid

bid=100

sname

rating > 5

Next Class

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Continue…

