
Database Applications (15-415)

DBMS Internals- Part VIII
Lecture 16, March 19, 2014

Mohammad Hammoud

Today…
 Last Session:

 DBMS Internals- Part VII
 Algorithms for Relational Operations (Cont’d)

 Today’s Session:

 DBMS Internals- Part VII
 Algorithms for Relational Operations (Cont’d)

 Introduction to Query Optimization

 Announcement:

 Project 3 is now posted. It is due on April 5th

DBMS Layers

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Outline

The Join Operation (Cont’d)

The Set Operations

The Aggregate Operations

Introduction to Query Optimization



The Join Operation

 We will study five join algorithms, two which enumerate
the cross-product and three which do not

 Join algorithms which enumerate the cross-product:

 Simple Nested Loops Join

 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:

 Index Nested Loops Join

 Sort-Merge Join

 Hash Join

Last Class

Today

The Join Operation

 We will study five join algorithms, two which enumerate
the cross-product and three which do not

 Join algorithms which enumerate the cross-product:

 Simple Nested Loops Join

 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:

 Index Nested Loops Join

 Sort-Merge Join

 Hash Join



Sort-Merge Join

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

 Sort both relations on join attribute(s)

 Scan each relation and merge

 This works only for equality join conditions!

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

?

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

NO

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

?

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

YES

Output the two tuples

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

?

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

YES

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

YES

Output the two tuples

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

?

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

NO

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

?

Sort-Merge Join: An Example

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

YES

Output the two tuples

Continue the
same way!

Sort-Merge Join: Cost

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

 What is the cost?

 ~ 2*M*logM/logB + 2*N* logN/logB + M + N

Sort-Merge Join: Actual Example

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

 Assuming B = 100 buffer pages, Reserves and

Sailors can be sorted in 2 passes

 Total cost = 7500 I/Os

 But, cost of Block NL Join = 7500 I/Os

Sort-Merge Join: Another Example

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

 Assuming B = 35 buffer pages, Reserves and

Sailors can be sorted in 2 passes

 Total cost = 7500 I/Os

 But, cost of Block NL Join = 15000 I/Os

Sort-Merge Join: Another Example

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

 Assuming B = 300 buffer pages, Reserves and

Sailors can be sorted in 2 passes

 Total cost = 7500 I/Os

 Cost of Block NL Join = 2500 I/Os

Sort-Merge Join is less sensitive to B values!

Sort-Merge Join: Another Example

R(A,..)

S(A,) M pages,

 m tuples
N pages,

 n tuples

 Assuming B = 300 buffer pages, Reserves and

Sailors can be sorted in 2 passes

 Total cost = 7500 I/Os

 Cost of Block NL Join = 2500 I/Os

It is possible to improve the Sort-Merge Join algorithm by combining the
merging phase of sorting with the merging phase of joining! (Cost = 3 (M+N))

The Join Operation

 We will study five join algorithms, two which enumerate
the cross-product and three which do not

 Join algorithms which enumerate the cross-product:

 Simple Nested Loops Join

 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:

 Index Nested Loops Join

 Sort-Merge Join

 Hash Join



Hash Join

 The join algorithm based on hashing has two phases:

 Partitioning (also called Building) Phase

 Probing (also called Matching) Phase

 Idea: hash both relations on the join attribute into k
partitions, using the same hash function h

 Premise: R tuples in partition i can join only with S
tuples in the same partition i

If R and S tuples are read and matched, do we need to read them again?

Hash Join: Partitioning Phase

 Partition both relations using hash function h

B main memory buffers Disk Disk

Original
Relation OUTPUT

2 INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .

Two tuples that belong to different partitions are
guaranteed not to match

Hash Join: Probing Phase

 Read in a partition of R, hash it using h2 (<> h)

 Scan the corresponding partition of S and search
for matches

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffers Disk

Output
 buffer

Disk

Join Result

hash
fn
h2

h2

Hash Join: Cost

 What is the cost of the partitioning phase?

 We need to scan R and S, and write them out once

 Hence, cost is 2(M+N) I/Os

 What is the cost of the probing phase?

 We need to scan each partition once (assuming no partition
overflows) of R and S

 Hence, cost is M + N I/Os

 Total Cost = 3 (M + N)

Hash Join: Cost (Cont’d)

 Total Cost = 3 (M + N)

 Joining Reserves and Sailors would cost 3 (500 + 1000)
= 4500 I/Os

 Assuming 10ms per I/O, hash join takes less than
1 minute!

 This underscores the importance of using a good join
algorithm (e.g., Simple NL Join takes ~140 hours!)

But, so far we have been assuming that partitions fit in memory!

Memory Requirements and
Overflow Handling

 How can we increase the chances for a given partition
in the probing phase to fit in memory?
 Maximize the number of partitions in the building phase

 If we partition R (or S) into k partitions, what would be
the size of each partition (in terms of B)?
 At least k output buffer pages and 1 input buffer page
 Given B buffer pages, k = B – 1
 Hence, the size of an R (or S) partition = M/B-1

 What is the number of pages in the (in-memory) hash
table built during the probing phase per a partition?
 f.M/B-1, where f is a fudge factor

Memory Requirements and
Overflow Handling

 What do we need else in the probing phase?
 A buffer page for scanning the S partition

 An output buffer page

 What is a good value of B as such?
 B > f.M/B-1 + 2

 Therefore, we need ~

 What if a partition overflows?
 Apply the hash join technique recursively (as is the case

with the projection operation)

MfB .

Hash Join vs. Sort-Merge Join

 If (M is the # of pages in the smaller
relation) and we assume uniform partitioning, the
cost of hash join is 3(M+N) I/Os

 If (N is the # of pages in the larger
relation), the cost of sort-merge join is 3(M+N) I/Os

MB 

NB 

Which algorithm to use, hash join or sort-merge join?

Hash Join vs. Sort-Merge Join
 If the available number of buffer pages falls between

and , hash join is preferred (why?)

 Hash Join shown to be highly parallelizable (beyond the
scope of the class)

 Hash join is sensitive to data skew while sort-merge join
is not

 Results are sorted after applying sort-merge join (may help
“upstream” operators)

 Sort-merge join goes fast if one of the input relations is

already sorted

N

M

The Join Operation

 We will study five join algorithms, two which enumerate
the cross-product and three which do not

 Join algorithms which enumerate the cross-product:

 Simple Nested Loops Join

 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:

 Index Nested Loops Join

 Sort-Merge Join

 Hash Join






General Join Conditions

 Thus far, we assumed a single equality join condition

 Practical cases include join conditions with several
equality (e.g., R.sid=S.sid AND R.rname=S.sname)
and/or inequality (e.g., R.rname < S.sname) conditions

 We will discuss two cases:

 Case 1: a join condition with several equalities

 Case 2: a join condition with an inequality comparison

General Join Conditions: Several Equalities

 Case 1: a join condition with several equalities (e.g.,
R.sid=S.sid AND R.rname=S.sname)
 Simple NL join and Block NL join are unaffected

 For index NL join, we can build an index on Reserves using the

composite key (sid, rname) and treat Reserves as the
inner relation

 For sort-merge join, we can sort Reserves on the composite
key (sid, rname) and Sailors on the composite key (sid, sname)

 For hash join, we can partition Reserves on the composite key
(sid, rname) and Sailors on the composite key (sid, sname)

General Join Conditions: An Inequality

 Case 2: a join condition with an inequality
comparison (e.g., R.rname < S.sname)
 Simple NL join and Block NL join are unaffected

 For index NL join, we require a B+ tree index

 Sort-merge join and hash join are not applicable!

Outline

The Join Operation (Cont’d)

The Set Operations

The Aggregate Operations

Introduction to Query Optimization



Set Operations

 R ∩ S is a special case of join!
 Q: How?

 A: With equality on all fields in the join condition

 R × S is a special case of join!
 Q: How?

 A: With no join condition

 How to implement R U S and R – S?
 Algorithms based on sorting

 Algorithms based on hashing

Union and Difference Based on Sorting

 How to implement R U S based on sorting?

 Sort R and S

 Scan sorted R and S (in parallel) and merge them,
eliminating duplicates

 How to implement R – S based on sorting?

 Sort R and S

 Scan sorted R and S (in parallel) and write only tuples
of R that do not appear in S

Union and Difference Based on Hashing

 How to implement R U S based on hashing?

 Partition R and S using a hash function h

 For each S-partition, build in-memory hash table (using h2)

 Scan R-partition which corresponds to S-partition and write
out tuples while discarding duplicates

 How to implement R – S based on hashing?

 Partition R and S using a hash function h

 For each S-partition, build in-memory hash table (using h2)

 Scan R-partition which corresponds to S-partition and write
out tuples which are in R-partition but not in S-partition

Outline

The Join Operation (Cont’d)

The Set Operations

The Aggregate Operations

Introduction to Query Optimization



Aggregate Operations

 Assume the following SQL query Q1:

 How to evaluate Q1?
 Scan Sailors

 Maintain the average on age

 In general, we implement aggregate operations by:
 Scanning the input relation

 Maintaining some running information (e.g., total for
SUM and smaller for MIN)

SELECT AVG(S.age)
FROM Sailors S

Aggregate Operations

 Assume the following SQL query Q2:

 How to evaluate Q2?

 An algorithm based on sorting

 An algorithm based on hashing

 Algorithm based on sorting:

 Sort Sailors on rating

 Scan sorted Sailors and compute the average for each
rating group

SELECT AVG(S.age)
FROM Sailors S
GROUP BY S.rating



Aggregate Operations

 Assume the following SQL query Q2:

 How to evaluate Q2?

 An algorithm based on sorting

 An algorithm based on hashing

 Algorithm based on hashing:

 Build a hash table on rating

 Scan Sailors and for each tuple t, probe its corresponding
hash bucket and update average

SELECT AVG(S.age)
FROM Sailors S
GROUP BY S.rating



Aggregate Operations

 Assume the following SQL query Q2:

 How to evaluate Q2 with the existence of an index?

 If the index is a tree index whose search key includes all
attributes in SELECT, WHERE and GROUP BY clauses, we
can pursue an index-only scan

 If group-by attributes form prefix of search key, we can
retrieve data entries/tuples in group-by order and
thereby avoid sorting

SELECT AVG(S.age)
FROM Sailors S
GROUP BY S.rating

Outline

The Join Operation (Cont’d)

The Set Operations

The Aggregate Operations

Introduction to Query Optimization 

DBMS Layers

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Introduction To Query Optimization

 A given query can be evaluated in many ways

 The difference between the best and worst ways (or
plans) can be several orders of magnitude

 The query optimizer is responsible for identifying an
efficient query plan

 It is unrealistic to expect an optimizer to find the very
best plan; it is more important to avoid the worst plans
and find a good plan

Cost-Based Query Sub-System

Query Parser

Query Optimizer

Plan

Generator

Plan Cost

Estimator

Query Plan Evaluator

Catalog Manager

Usually there is a
heuristics-based
rewriting step before
the cost-based steps.

Schema Statistics

Select *

From Blah B

Where B.blah = blah
Queries

Query Optimization Steps

 Queries are parsed into internal forms (e.g., parse trees)

 Internal forms are transformed into ‘canonical forms’
(syntactic query optimization)

 A subset of alternative plans are enumerated

 Costs for alternative plans are estimated

 The plan with the least estimated cost is picked

Required Information to Evaluate Queries

 To estimate the costs of query plans, the query
optimizer examines the system catalog and retrieves:

 Information about the types and lengths of fields

 Statistics about the referenced relations

 Access paths (indexes) available for relations

 In particular, the Schema and Statistics components
in the Catalog Manager are inspected to find a good
enough query evaluation plan

Catalog Manager: The Schema

 What kind of information do we store at the Schema?

 Information about tables (e.g., table names and
integrity constraints) and attributes (e.g., attribute
names and types)

 Information about indices (e.g., index structures)

 Information about users

 Where do we store such information?

 In tables, hence, can be queried like any other tables

 For example: Attribute_Cat (attr_name: string,
rel_name: string; type: string; position: integer)

Catalog Manager: Statistics

 What would you store at the Statistics component?
 NTuples(R): # records for table R

 NPages(R): # pages for R

 NKeys(I): # distinct key values for index I

 INPages(I): # pages for index I

 IHeight(I): # levels for I

 ILow(I), IHigh(I): range of values for I

 ...

 Such statistics are important for estimating plan
costs and result sizes (to be discussed next week!)

SQL Blocks

 SQL queries are optimized by decomposing them into a
collection of smaller units, called blocks

 A block is an SQL query with no nesting and exactly 1
SELECT, 1 FROM, at most 1 WHERE and at most 1
GROUP BY and 1 HAVING clauses

 A typical relational query optimizer concentrates on
optimizing a single block at a time

Translating SQL Queries Into Relational
Algebra Trees

select name

from STUDENT, TAKES

where c-id=‘415’ and

STUDENT.ssn=TAKES.ssn

STUDENT TAKES



s

p

 An SQL block can be thought of as an algebra expression containing:
 A cross-product of all relations in the FROM clause
 Selections in the WHERE clause
 Projections in the SELECT clause

 Remaining operators can be carried out on the result of such

SQL block

Translating SQL Queries Into Relational
Algebra Trees (Cont’d)

STUDENT TAKES



s

p

STUDENT TAKES



s

p Canonical form

Still the same result!

How can this be guaranteed? Next class!

Translating SQL Queries Into Relational
Algebra Trees (Cont’d)

STUDENT TAKES



s

p

STUDENT TAKES



s

p Canonical form

OBSERVATION: perform selections and projections early!

Translating SQL Queries Into Relational
Algebra Trees (Cont’d)

STUDENT TAKES



s

p

Index; seq scan

Hash join;

merge join;

nested loops;

How to evaluate a query plan (as opposed to
evaluating an operator)?

Next Class

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Continue…

