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Today… 
 Last Session: 

 DBMS Internals- Part VII 
 Algorithms for Relational Operations (Cont’d) 
 

 Today’s Session: 

 DBMS Internals- Part VII 
 Algorithms for Relational Operations (Cont’d) 

 Introduction to Query Optimization 

 

 Announcement: 

 Project 3 is now posted. It is due on April 5th  
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The Join Operation 

 We will study five join algorithms, two which enumerate 
the cross-product and three which do not 

 
 Join algorithms which enumerate the cross-product: 

 Simple Nested Loops Join 

 Block Nested Loops Join 
 

 Join algorithms which do not enumerate the cross-product: 

 Index Nested Loops Join 

 Sort-Merge Join 

 Hash Join 
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Sort-Merge Join 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

 Sort both relations on join attribute(s) 

 Scan each relation and merge 

 This works only for equality join conditions! 



Sort-Merge Join: An Example 

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

? 
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Continue the  
same way! 



Sort-Merge Join: Cost 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

 What is the cost? 

 ~ 2*M*logM/logB + 2*N* logN/logB + M + N 

 



Sort-Merge Join: Actual Example 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

 Assuming B = 100 buffer pages, Reserves and 

Sailors can be sorted in 2 passes 

 Total cost = 7500 I/Os 

 But, cost of Block NL Join = 7500 I/Os 

 



Sort-Merge Join: Another Example 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

 Assuming B = 35 buffer pages, Reserves and 

Sailors can be sorted in 2 passes 

 Total cost = 7500 I/Os 

 But, cost of Block NL Join = 15000 I/Os 

 



Sort-Merge Join: Another Example 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

 Assuming B = 300 buffer pages, Reserves and 

Sailors can be sorted in 2 passes 

 Total cost = 7500 I/Os 

 Cost of Block NL Join = 2500 I/Os 

 

Sort-Merge Join is less sensitive to B values! 



Sort-Merge Join: Another Example 

R(A,..) 

S(A, ......) M pages, 

 m tuples 
N pages, 

 n tuples 

 Assuming B = 300 buffer pages, Reserves and 

Sailors can be sorted in 2 passes 

 Total cost = 7500 I/Os 

 Cost of Block NL Join = 2500 I/Os 

 

It is possible to improve the Sort-Merge Join algorithm by combining the 
merging phase of sorting with the merging phase of joining! (Cost = 3 (M+N)) 



The Join Operation 

 We will study five join algorithms, two which enumerate 
the cross-product and three which do not 

 
 Join algorithms which enumerate the cross-product: 

 Simple Nested Loops Join 

 Block Nested Loops Join 
 

 Join algorithms which do not enumerate the cross-product: 

 Index Nested Loops Join 

 Sort-Merge Join 
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Hash Join 

 The join algorithm based on hashing has two phases: 

 Partitioning (also called Building) Phase 

 Probing (also called Matching) Phase 

 

 Idea: hash both relations on the join attribute into k 
partitions, using the same hash function h 

 

 Premise: R tuples in partition i can join only with S 
tuples in the same partition i 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

If R and S tuples are read and matched, do we need to read them again? 



Hash Join: Partitioning Phase 

 Partition both relations using hash function h 
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. . . 

Two tuples that belong to different partitions are  
guaranteed not to match 



Hash Join: Probing Phase 

 Read in a partition of R, hash it using h2 (<> h) 

  

 Scan the corresponding partition of S and search  
for matches 
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Hash Join: Cost 

 What is the cost of the partitioning phase? 

 We need to scan R and S, and write them out once 

 Hence, cost is 2(M+N) I/Os 

 

 What is the cost of the probing phase? 

 We need to scan each partition once (assuming no partition 
overflows) of R and S 

 Hence, cost is M + N I/Os 

 

 Total Cost = 3 (M + N) 

 

 

 

 

 
 
 

 

 

 

 

 

 



Hash Join: Cost (Cont’d) 

 Total Cost = 3 (M + N) 
 

 Joining Reserves and Sailors would cost 3 (500 + 1000)  
= 4500 I/Os 
 

 Assuming 10ms per I/O, hash join takes less than  
1 minute! 
 

 This underscores the importance of using a good join 
algorithm (e.g., Simple NL Join takes ~140 hours!) 
 
 
 

 
 
 
 

 
 
 

 
 
 

But, so far we have been assuming that partitions fit in memory! 



Memory Requirements and  
Overflow Handling 

 How can we increase the chances for a given partition 
in the probing phase to fit in memory? 
 Maximize the number of partitions in the building phase 

 

 If we partition R (or S) into k partitions, what would be 
the size of each partition (in terms of B)? 
 At least k output buffer pages and 1 input buffer page 
 Given B buffer pages, k = B – 1 
 Hence, the size of an R (or S) partition = M/B-1 

 

 What is the number of pages in the (in-memory) hash 
table built during the probing phase per a partition? 
 f.M/B-1, where f is a fudge factor 

 

 
 
 
 

 
 
 
 

 
 
 

 
 
 



Memory Requirements and  
Overflow Handling 

 What do we need else in the probing phase? 
 A buffer page for scanning the S partition 

 An output buffer page 

 

 What is a good value of B as such? 
 B > f.M/B-1 + 2 

 Therefore, we need ~  

 

 What if a partition overflows? 
 Apply the hash join technique recursively (as is the case 

with the projection operation) 
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Hash Join vs. Sort-Merge Join 

 If                     (M is the # of pages in the smaller 
relation) and we assume uniform partitioning, the 
cost of hash join is 3(M+N) I/Os 

 

 If                    (N is the # of pages in the larger 
relation), the cost of sort-merge join is 3(M+N) I/Os   

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

MB 

NB 

Which algorithm to use, hash join or sort-merge join? 



Hash Join vs. Sort-Merge Join 
 If the available number of buffer pages falls between 

and         , hash join is preferred (why?) 
 

 Hash Join shown to be highly parallelizable (beyond the 
scope of the class) 
 

 Hash join is sensitive to data skew while sort-merge join  
is not 
 

 Results are sorted after applying sort-merge join (may help 
“upstream” operators) 

 
 Sort-merge join goes fast if one of the input relations is 

already sorted 
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The Join Operation 

 We will study five join algorithms, two which enumerate 
the cross-product and three which do not 
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General Join Conditions 

 Thus far, we assumed a single equality join condition 

 

 Practical cases include join conditions with several 
equality (e.g.,  R.sid=S.sid AND R.rname=S.sname) 
and/or inequality (e.g.,  R.rname < S.sname) conditions 

 

 We will discuss two cases: 

 Case 1: a join condition with several equalities 

 Case 2: a join condition with an inequality comparison 

  

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 



General Join Conditions: Several Equalities 

 Case 1: a join condition with several equalities (e.g.,  
R.sid=S.sid AND R.rname=S.sname)  
 Simple NL join and Block NL join are unaffected 

 
 For index NL join, we can build an index on Reserves using the 

composite key (sid, rname) and treat Reserves as the  
inner relation 
 

 For sort-merge join, we can sort Reserves on the composite 
key (sid, rname) and Sailors on the composite key (sid, sname)  
 

 For hash join, we can partition Reserves on the composite key 
(sid, rname) and Sailors on the composite key (sid, sname)  
 
 

 
 
 



General Join Conditions: An Inequality 

 Case 2: a join condition with an inequality 
comparison (e.g.,  R.rname < S.sname)  
 Simple NL join and Block NL join are unaffected 

 
 For index NL join, we require a B+ tree index 

 
 Sort-merge join and hash join are not applicable! 
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Set Operations 

 R ∩ S is a special case of join! 
 Q: How? 

 A: With equality on all fields in the join condition 

 

 R × S is a special case of join! 
 Q: How? 

 A: With no join condition 
 

 How to implement R U S and R – S? 
 Algorithms based on sorting 

 Algorithms based on hashing 

 

 



Union and Difference Based on Sorting 

 How to implement R U S based on sorting? 

 Sort R and S 

 Scan sorted R and S (in parallel) and merge them, 
eliminating duplicates 

 

 How to implement R – S based on sorting? 

 Sort R and S 

 Scan sorted R and S (in parallel) and write only tuples 
of R that do not appear in S 



Union and Difference Based on Hashing 

 How to implement R U S based on hashing? 

 Partition R and S using a hash function h 

 For each S-partition, build in-memory hash table (using h2)  

 Scan R-partition which corresponds to S-partition and write 
out tuples while discarding duplicates 

 

 How to implement R – S based on hashing? 

 Partition R and S using a hash function h 

 For each S-partition, build in-memory hash table (using h2)  

 Scan R-partition which corresponds to S-partition and write 
out tuples which are in R-partition but not in S-partition 
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Aggregate Operations 

 Assume the following SQL query Q1: 

 

 

 How to evaluate Q1? 
 Scan Sailors 

 Maintain the average on age 

 

 In general, we implement aggregate operations by: 
 Scanning the input relation 

 Maintaining some running information (e.g., total for 
SUM and smaller for MIN) 

 

SELECT AVG(S.age) 
FROM Sailors S 



Aggregate Operations 

 Assume the following SQL query Q2: 

 

 

 How to evaluate Q2? 

 An algorithm based on sorting 

 An algorithm based on hashing 

 

 Algorithm based on sorting: 

 Sort Sailors on rating 

 Scan sorted Sailors and compute the average for each 
rating group 

SELECT AVG(S.age) 
FROM Sailors S 
GROUP BY S.rating 

  



Aggregate Operations 

 Assume the following SQL query Q2: 

 

 

 How to evaluate Q2? 

 An algorithm based on sorting 

 An algorithm based on hashing 

 

 Algorithm based on hashing: 

 Build a hash table on rating 

 Scan Sailors and for each tuple t, probe its corresponding 
hash bucket and update average 

SELECT AVG(S.age) 
FROM Sailors S 
GROUP BY S.rating 

  



Aggregate Operations 

 Assume the following SQL query Q2: 

 

 

 How to evaluate Q2 with the existence of an index? 

 If the index is a tree index whose search key includes all 
attributes in SELECT, WHERE and GROUP BY clauses, we 
can pursue an index-only scan  

 

 If group-by attributes form prefix of search key, we can 
retrieve data entries/tuples in group-by order and 
thereby avoid sorting 

SELECT AVG(S.age) 
FROM Sailors S 
GROUP BY S.rating 
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Introduction To Query Optimization 

 A given query can be evaluated in many ways 

 

 The difference between the best and worst ways (or 
plans) can be several orders of magnitude 

 

 The query optimizer is responsible for identifying an 
efficient query plan 

 

 It is unrealistic to expect an optimizer to find the very 
best plan; it is more important to avoid the worst plans 
and find a good plan  

 
 



Cost-Based Query Sub-System 

Query Parser 

Query Optimizer 

Plan 

Generator 

Plan Cost 

Estimator 

Query Plan Evaluator 

Catalog Manager 

Usually there is a 
heuristics-based 
rewriting step before 
the cost-based steps. 

Schema Statistics 

Select * 

From Blah B 

Where B.blah = blah 
Queries 



Query Optimization Steps 

 Queries are parsed into internal forms (e.g., parse trees) 

 

 Internal forms are transformed into ‘canonical forms’ 
(syntactic query optimization) 

 

 A subset of alternative plans are enumerated 

 

 Costs for alternative plans are estimated  

 

 The plan with the least estimated cost is picked 

 

 



Required Information to Evaluate Queries 

 To estimate the costs of query plans, the query 
optimizer examines the system catalog and retrieves: 

 Information about the types and lengths of fields 

 Statistics about the referenced relations 

 Access paths (indexes) available for relations 
 

 In particular, the Schema and Statistics components 
in the Catalog Manager are inspected to find a good 
enough query evaluation plan 

 



Catalog Manager: The Schema 

 What kind of information do we store at the Schema? 

 Information about tables (e.g., table names and 
integrity constraints) and attributes (e.g., attribute 
names and types) 

 Information about indices (e.g., index structures)  

 Information about users 
 

 Where do we store such information? 

 In tables, hence, can be queried like any other tables  

 For example: Attribute_Cat (attr_name: string, 
rel_name: string; type: string; position: integer) 



Catalog Manager: Statistics 

 What would you store at the Statistics component? 
 NTuples(R): # records for table R 

 NPages(R): # pages for R 

 NKeys(I): # distinct key values for index I 

 INPages(I): # pages for index I 

 IHeight(I): # levels for I 

 ILow(I), IHigh(I): range of values for I 

 ... 

 

 Such statistics are important for estimating plan 
costs and result sizes (to be discussed next week!) 

 



SQL Blocks 

 SQL queries are optimized by decomposing them into a 
collection of smaller units, called blocks 

 

 A block is an SQL query with no nesting and exactly 1 
SELECT, 1 FROM, at most 1 WHERE and at most 1 
GROUP BY and 1 HAVING clauses 

 

 A typical relational query optimizer concentrates on 
optimizing a single block at a time 

 

 



Translating SQL Queries Into Relational 
Algebra Trees 

select name 

from STUDENT, TAKES 

where c-id=‘415’ and 

STUDENT.ssn=TAKES.ssn 

STUDENT TAKES 



s 

p 

 An SQL block can be thought of as an algebra expression containing: 
 A cross-product of all relations in the FROM clause 
 Selections in the WHERE clause 
 Projections in the SELECT clause 

 
 Remaining operators can be carried out on the result of such  

SQL block  



Translating SQL Queries Into Relational 
Algebra Trees (Cont’d) 

STUDENT TAKES 



s 

p 

STUDENT TAKES 



s 

p Canonical form 

Still the same result! 

How can this be guaranteed? Next class! 



Translating SQL Queries Into Relational 
Algebra Trees (Cont’d) 

STUDENT TAKES 



s 

p 

STUDENT TAKES 



s 

p Canonical form 

OBSERVATION: perform selections and projections early! 



Translating SQL Queries Into Relational 
Algebra Trees (Cont’d) 

STUDENT TAKES 



s 

p 

Index; seq scan 

Hash join; 

merge join; 

nested loops; 

How to evaluate a query plan (as opposed to  
evaluating an operator)? 



Next Class 

Query Optimization 

and Execution 

Relational Operators 

Files and Access Methods 
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Disk Space Management 

DB 
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Transaction 
Manager 

Lock 
Manager 

Recovery 
Manager 

Continue… 


