
Database Applications (15-415)

DBMS Internals- Part VI
Lecture 14, March 12, 2014

Mohammad Hammoud

Today…
 Last Session:
 DBMS Internals- Part V
 Hash-based indexes (Cont’d) and External Sorting

 Today’s Session:
 DBMS Internals- Part VI
 Algorithms for Relational Operations

 Announcements:
 Project 2 is due on March 15 (NOT 13) by midnight
 We will solve the midterm exam tomorrow at the

recitation. Please bring any question about project 2
as well.

DBMS Layers

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Outline

Introduction

The Selection Operation

The Projection Operation

The Join Operation



Relational Operations
 We will consider how to implement:

 Selection ()
 Projection ()
 Join ()
 Set-difference ()
 Union ()
 Aggregation (SUM, MIN, etc.) and GROUP BY

 Since each operation returns a relation, ops can be composed!

 After we cover how to implement operations, we will discuss

how to optimize queries (formed by composing operators)

σ
π



−


Assumptions
 We assume the following two relations:

 For Reserves, we assume:
 Each tuple is 40 bytes long, 100 tuples per page, 1000 pages

 For Sailors, we assume:

 Each tuple is 50 bytes long, 80 tuples per page, 500 pages

 Our cost metric is the number of I/Os

 We ignore the computational and output costs

Sailors (sid: integer, sname: string, rating: integer, age: real)

Reserves (sid: integer, bid: integer, day: dates, rname: string)

Outline

Introduction

The Selection Operation

The Projection Operation

The Join Operation



The Selection Operation

Discussions on:

Simple Selection Conditions General Selection Conditions

The Selection Operation: Basic Approach
 Consider the following selection query, Q:

 How can we evaluate Q?
 Scan Reserves entirely
 Check the condition on each tuple
 Add the tuple to the result if the condition is satisfied

 What is the I/O cost?
 1000 I/Os (since Reserves contains 1000 pages)!

SELECT *
FROM Reserves R
WHERE R.rname = ‘Joe’

Can we do better?

How to Improve Upon the Basic Approach
for Selections?

 We can utilize the information in the selection condition
and use an index (if a suitable index is available)

 For instance, a B+ tree index on rname can be used to
answer Q considerably faster
 But, an index on bid (for example) would not be useful!

 Different data organizations dictate different evaluations
for the selection operation:
 No Index, Unsorted Data
 No Index, Sorted Data
 B+ Tree Index
 Hash Index

No Index, Unsorted Data
 Assume a selection operation of the form:

 If there is no index on R.attr and R is not sorted, we have
to scan R entirely

 Therefore, the most selective access path is a file scan

 During the file scan, for each tuple, we test the condition
R.attr op value and add the tuple to the result if the
condition is satisfied (this is the basic approach!)

)(. RvalueopattrRσ

No Index, Sorted Data
 Assume a selection operation of the form:

 What can be done if there is no index on R.attr but R is sorted?
 Do a binary search to locate the first tuple
 Start at the located tuple and scan R until the selection condition

is no more satisfied

 Therefore, the most selective access path is a sorted-file scan

 I/O cost = O(log2 M) + scan cost (which can vary from 0 to M)

)(. RvalueopattrRσ

B+ Tree Index
 Assume a selection operation of the form:

 What can be done if there is a B+ tree index on R.attr?
 Search the tree to locate the first index entry that points to a

qualifying tuple of R (STEP 1)
 Scan the leaf pages to retrieve all entries in which the key

value satisfies the selection condition (STEP 2)

 What would be the I/O cost?
 STEP 1: 2 or 3 I/Os
 STEP 2: Depends on the number of qualifying tuples, the

employed alternative and whether the index is clustered

)(. RvalueopattrRσ

B+ Tree Index (Cont’d)
 What if the index uses Alternative (1)?
 The leaf pages contain the actual tuples and no additional cost

is incurred

 What if the index is clustered and uses Alternative (2) or (3)?
 Best case: 1 I/O
 Worst case: # of leaf pages scanned

 What if the index is un-clustered and uses Alternative (2) or (3)?
 Each index entry can point to a qualifying tuple on a different page
 Cost = 1 I/O per a qualifying tuple!
 Can we do better?

B+ Tree Index (Cont’d)
 Important refinement for un-clustered indexes:
 Find qualifying index entries
 Sort the rids by their page-id component
 Read tuples in order

 This ensures that each data page is fetched just once

 I/O Cost = 1 I/O per a data page (vs. 1 I/O per a

qualifying tuple)!

Hash Index
 Assume an “equality” selection operation S of the form:

 The best way to implement S is to use a hash index (if
available on R.attr)

 Cost = 1 or 2 I/Os (to retrieve the appropriate bucket page)
+ # of I/Os to retrieve qualifying tuples (could be 1 or many)

 The cost of retrieving qualifying tuples depends on:
 The number of such tuples
 Whether the index is clustered or un-clustered!

)(. RvalueattrR =σ

The Selection Operation

Discussions on:

Simple Selection Conditions General Selection Conditions

General Selection Conditions
 Thus far, we have considered only simple selection

conditions of the form R.attr op value

 In general, a selection condition is an expression with
logical connectives (i.e., ˄ and ˅) of terms
 E.g., R.rname = ‘Joe’ ˄ R.bid=r (R)

 A selection with conjunctions of conditions is said to be in
Conjunctive Normal Form (CNF) and each condition is
called a conjunct

 A conjunct can contain disjunctions and is said to
be disjunctive

General Selection Conditions (Cont’d)
 Selection conditions that contain disjunctive conjuncts can

be rewritten in CNF
 E.g., (day < 8/9/02 ˄ rname = ‘Joe’) ˅ bid=5 ˅ sid=3 is equivalent to

(day < 8/9/02 ˅ bid=5 ˅ sid=3) ˄ (rname = ‘Joe’ ˅ bid=5 ˅ sid=3)

 A tree index matches a CNF selection if conjuncts involve
attributes in only a prefix of the search key
 E.g., Tree index on <a, b, c> matches the selection condition a=5

AND b=3, and a=5 AND b>6, but not b=3

 A hash index matches a CNF selection if there is a conjunct
for every attribute in the index’s search key
 E.g., Hash index on <a, b, c> matches a=5 AND b=3 AND c=5; but

it does not match b=3, or a=5 AND b=3, or a>5 AND b=3 AND c=5

Two General Cases
 We will discuss general selections:
Without Disjunctions
With Disjunctions

Two General Cases
 We will discuss general selections:
Without Disjunctions
With Disjunctions

Evaluating Selections without Disjunctions

 There are two approaches to general selections
without disjunctions:
 Approach 1- The Single-Index Approach:
Find the most selective access path, MSAP
Retrieve tuples using MSAP
Check for each retrieved tuple any

remaining terms which do not
match the index

The Single-Index Approach: Examples
 Consider day<8/9/94 AND bid=5 AND sid=3:
 Example 1:
 A B+ tree index on day is used
 Then, bid=5 and sid=3 must be checked for each

retrieved tuple

 Example 2:
 A hash index on <bid, sid> is used
 Then, day<8/9/94 must be checked for each

retrieved tuple

Evaluating Selections without Disjunctions

 There are two approaches to general selections
without disjunctions:
 Approach 2- The Multiple-Indices Approach:
Get sets of rids (assuming Alternative (2) or

(3)) using each matching index
 Intersect these sets of rids
Retrieve the tuples
Check for each retrieved tuple any remaining

terms which do not match indices

The Multiple-Indices Approach:
An Example

 Consider day<8/9/94 AND bid=5 AND sid=3:
 If we have a B+ tree index on day (Id) and an

index on sid (Is), we can:
Retrieve rids satisfying day<8/9/94 using Id
Retrieve rids satisfying sid=3 using Is
 Intersect results
Retrieve tuples and check bid=5

Two General Cases
 We will discuss general selections:
Without Disjunctions
With Disjunctions

Evaluating Selections with Disjunctions
 There are three cases to general selections with

disjunctions:
 CASE 1: If a conjunct, C, is a disjunction of terms, and

one term requires a file scan, testing C would require a
file scan
 CASE 2: If the selection condition is CNF and contains a

conjunct with disjunctions, we can take advantage of
other conjuncts
 CASE 3: If every term in a disjunction has a matching

index, we can retrieve candidate tuples using the
indices and union them all

Evaluating Selections with Disjunctions
 CASE 1: If a conjunct, C, is a disjunction of terms and one

term requires a file scan, testing C would require a file scan

 E.g., Consider day<8/9/94 OR rname=‘Joe’ and suppose
hash indices on rname (i.e., I1) and sid (i.e., I2), are available
 We can retrieve tuples satisfying rname = ‘Joe’ using I1

 However, day<8/9/94 requires a file scan
 Hence, as the file scan is to be done, we can check the

condition rname=‘Joe’ and preclude using I1 at first place

 Therefore, the most selective access path is a file scan only

Evaluating Selections with Disjunctions
 CASE 2: If the selection condition is CNF and contains a

conjunct with a disjunction, we can take advantage of
other conjuncts

 E.g., Consider (day<8/9/94 OR rname=‘Joe’) AND
sid=3. Suppose also the existence of a hash index
on sid (Is)
 We can use Is to find qualifying tuples on sid and check

for each retrieved tuple day<8/9/94 OR rname=‘Joe’
 Therefore, the most selective access path is the index

on sid

Evaluating Selections with Disjunctions
 CASE 3: If every term in a disjunction has a matching index,

we can retrieve candidate tuples using the indices and union
them all

 E.g., Consider day<8/9/94 OR rname=‘Joe’ and suppose B+
indices on day (i.e., I1) and rname (i.e., I2), are available
 We can retrieve tuples satisfying day<8/9/94 using I1
 In addition, we can retrieve tuples satisfying rname = ‘Joe’

using I2

 We can subsequently union their results

Q: What if all matching indices use Alternative (2) or (3)?

A: Apply the refinement for un-clustered indices! (see Slide 15)

Outline

Introduction

The Selection Operation

The Projection Operation

The Join Operation



The Projection Operation
 Consider the following query, Q, which implies

a projection:

 How can we evaluate Q?
 Scan R and remove unwanted attributes (STEP 1)
 Eliminate any duplicate tuples (STEP 2)

 STEP2 is difficult and can be pursued using two
basic algorithms:
 Projection Based on Sorting
 Projection Based on Hashing

SELECT DISTINCT R.sid, R.bid
FROM Reserves R

The Projection Operation

Discussions on:

Projection Based on Sorting Projection Based on Hashing

Projection Based on Sorting
 The algorithm based on sorting has the following steps:
 Step 1: Scan R and produce a set of tuples, S, which contains

only the wanted attributes
 Step 2: Sort S using external sorting
 Step 3: Scan the sorted result, compare adjacent tuples, and

discard duplicates

 What is the I/O cost (assuming we use temporary relations)?
 Step 1: M + T I/Os, where M is the number of pages of R and T is

the number of pages of the temporary relation
 Step 2: 2T × # of passes I/Os
 Step 3: T I/Os

The Projection Operation: An Example
 Consider Q again:

 How many I/Os would evaluating Q incur?
 Step 1: M + T = 1000 I/Os + 250 I/Os, assuming each

tuple written in the temporary relation is 10 bytes long
 Step 2: if B (say) is 20, we can sort the temporary

relation in 2 passes at a cost of 2×250×2 = 1000 I/Os
 Step 3: add another 250 I/Os for the scan
 Total = 2500 I/Os

SELECT DISTINCT R.sid, R.bid
FROM Reserves R

Can we do better?

Projection Based on Modified
External Sorting

 Projection based on sorting can be simply done by
modifying the external sorting algorithm

 How can this be achieved?
 Pass 0: Project out unwanted attributes
 Passes 2, 3, etc.: Eliminate duplicates during merging

 What is the I/O cost?
 Pass 0: M + T I/Os
 Passes 2, 3, etc.: Cost of merging

Projection Based on Modified
External Sorting: An Example

 Consider Q again:

 How many I/Os would evaluating Q incur?
 Pass 0: M + T = 1000 + 250 I/Os
 Pass 1: read the runs (total of 250 pages) and

merge them
 Grand Total = 1500 I/Os (as opposed to 2500 I/Os

using the unmodified version!)

SELECT DISTINCT R.sid, R.bid
FROM Reserves R

The Projection Operation

Discussions on:

Projection Based on Sorting Projection Based on Hashing

Projection Based on Hashing
 The algorithm based on hashing has two phases:
 Partitioning Phase
 Duplicate Elimination Phase

 Partitioning Phase (assuming B buffers):
 Read R using 1 input buffer, one page at a time
 For each tuple in the input page
 Discard unwanted fields
 Apply hash function h1 to choose one of B-1

output buffers

Projection Based on Hashing
 The algorithm based on hashing has two phases:
 Partitioning Phase
 Duplicate Elimination Phase

 Partitioning Phase:

B main memory buffers Disk Disk

Original
Relation OUTPUT

2 INPUT

1

hash
function

h1 B-1

Partitions

1

2

B-1

. . .

Two tuples that belong to different partitions are
guaranteed not to be duplicates

Projection Based on Hashing
 The algorithm based on hashing has two phases:
 Partitioning Phase
 Duplicate Elimination Phase

 Duplicate Elimination Phase:
 Read each partition and build a corresponding in-

memory hash table, using hash function h2 (<> h1) on all
fields, while discarding duplicates
 If a partition P does not fit in memory, apply hash-based

projection algorithm recursively on P

Projection Based on Hashing
 The algorithm based on hashing has two phases:
 Partitioning Phase
 Duplicate Elimination Phase

 What is the I/O cost of hash-based projection?
 Partitioning phase = M (to read R) + T (to write out the

projected tuples) I/Os
 Duplicate Elimination phase = T (to read in every

partition) (CPU and final writing costs are ignored)
 Total Cost = M + 2T

Projection Based on Hashing: An Example

 Consider Q again:

 How many I/Os would evaluating Q incur?
 Partitioning phase: M + T = 1000 + 250 I/Os
 Duplicate Elimination phase: T = 250 I/Os
 Total = 1500 I/Os (as opposed to 2500 I/Os and 1500

I/Os using projection based on sorting and projection
based on modified external sorting, respectively)

SELECT DISTINCT R.sid, R.bid
FROM Reserves R

Which one is better, projection based on modified external sorting or
projection based on hashing?

Sorting vs. Hashing
 The sorting-based approach is superior if:
 The duplicate frequency is high
 Or the distribution of (hash) values is very skewed

 With the sorting-based approach the result is sorted!

 Most DBMSs incorporate a sorting utility, which can be

used to implement projection relatively easy

 Hence, sorting is the standard approach for projection!

Index-Only Scan
 Can an index be used for projections?
 Useful if the key includes all wanted attributes
 As such, key values can be simply retrieved from the

index without ever accessing the actual relation!
 This technique is referred to as index-only scan

 If an ordered (i.e., tree) index contains all wanted

attributes as prefix of search key, we can:
 Retrieve index entries in order (index-only scan)
 Discard unwanted fields and compare adjacent tuples to

eliminate duplicates

Outline

Introduction

The Selection Operation

The Projection Operation

The Join Operation 

The Join Operation
 Consider the following query, Q, which implies a join:

 How can we evaluate Q?
 Compute R × S
 Select (and project) as required

 But, the result of a cross-product is typically much larger

than the result of a join

 Hence, it is very important to implement joins without
materializing the underlying cross-product

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid = S.sid

The Join Operation
 We will study five join algorithms, two which enumerate

the cross-product and three which do not

 Join algorithms which enumerate the cross-product:
 Simple Nested Loops Join
 Block Nested Loops Join

 Join algorithms which do not enumerate the cross-product:
 Index Nested Loops Join
 Sort-Merge Join
 Hash Join

Assumptions
 We assume equality joins with:
 R represents Reserves and S represents Sailors
 M pages in R, pR tuples per page, m tuples total
 N pages in S, pS tuples per page, n tuples total

 We will consider more complex join conditions later

 Our cost metric is the number of I/Os

 We ignore output and computational costs

Simple Nested Loops Join
• Algorithm #0: (naive) nested loop (SLOW!)

R(A,..)
S(A,)

m
n

Simple Nested Loops Join
• Algorithm #0: (naive) nested loop (SLOW!)

R(A,..)
S(A,)

m
n

for each tuple r of R
for each tuple s of S

print, if they match

Simple Nested Loops Join
• Algorithm #0: (naive) nested loop (SLOW!)

R(A,..)
S(A,)

m
n

for each tuple r of R
for each tuple s of S

print, if they match

Outer Relation
Inner Relation

Simple Nested Loops Join
• Algorithm #0: (naive) nested loop (SLOW!)

R(A,..)
S(A,)

m
n

How many disk accesses (‘M’ and ‘N’ are the
numbers of pages for ‘R’ and ‘S’)?

Simple Nested Loops Join
• Algorithm #0: (naive) nested loop (SLOW!)

R(A,..)
S(A,)

m
n

How many disk accesses (‘M’ and ‘N’ are the
numbers of pages for ‘R’ and ‘S’)?

I/O Cost = M+m*N

Simple Nested Loops Join
 Let us check with actual numbers:
 Cost = (pR * M) * N + M = 100*1000*500+1000 I/Os
 At 10ms/IO, total = ~6days (!)

 What if we do the join one-page-at-a-time?
 Cost = M * N + M = 1000*500+1000 I/Os
 At 10ms/IO, total = 1.4 hours (!)

 What if smaller relation (S) was outer?
 (1000*500+1000) vs. (1000*500+500)
 Slightly better

Next Class

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Continue…

	Database Applications (15-415)��DBMS Internals- Part VI�Lecture 14, March 12, 2014
	Today…
	DBMS Layers
	Outline
	Relational Operations
	Assumptions
	Outline
	The Selection Operation
	The Selection Operation: Basic Approach
	How to Improve Upon the Basic Approach for Selections?
	No Index, Unsorted Data
	No Index, Sorted Data
	B+ Tree Index
	B+ Tree Index (Cont’d)
	B+ Tree Index (Cont’d)
	Hash Index
	The Selection Operation
	General Selection Conditions
	General Selection Conditions (Cont’d)
	Two General Cases
	Two General Cases
	Evaluating Selections without Disjunctions
	The Single-Index Approach: Examples
	Evaluating Selections without Disjunctions
	The Multiple-Indices Approach: �An Example
	Two General Cases
	Evaluating Selections with Disjunctions
	Evaluating Selections with Disjunctions
	Evaluating Selections with Disjunctions
	Evaluating Selections with Disjunctions
	Outline
	The Projection Operation
	The Projection Operation
	Projection Based on Sorting
	The Projection Operation: An Example
	Projection Based on Modified �External Sorting
	Projection Based on Modified �External Sorting: An Example
	The Projection Operation
	Projection Based on Hashing
	Projection Based on Hashing
	Projection Based on Hashing
	Projection Based on Hashing
	Projection Based on Hashing: An Example
	Sorting vs. Hashing
	Index-Only Scan
	Outline
	The Join Operation
	The Join Operation
	Assumptions
	Simple Nested Loops Join
	Simple Nested Loops Join
	Simple Nested Loops Join
	Simple Nested Loops Join
	Simple Nested Loops Join
	Simple Nested Loops Join
	Next Class

