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Today… 
 
 
 

Welcome Back from Spring Break! 
 

 



Today… 
 Last Session: 
 DBMS Internals- Part IV 
 Tree-based (i.e., B+ Tree) and Hash-based (i.e., 

Extendible Hashing) indexes 
 

 Today’s Session: 
 DBMS Internals- Part V 
 Hash-based indexes (Cont’d) and External Sorting 

 
 Announcements: 
 Project 1 grades are out 
 Midterm grades are out 
 Project 2 is due on March 13 by midnight. 

 
 



DBMS Layers 

Query Optimization 
and Execution 

Relational Operators 

Files and Access Methods 

Buffer Management 

Disk Space Management 

DB 

Queries 

Transaction 
Manager 

Lock 
Manager 

Recovery 
Manager 

Continued… 



Outline 
Linear Hashing 

Why Sorting? 

In-Memory vs. External Sorting 

A Simple 2-Way External Merge Sorting 

General External Merge Sorting 

Optimizations: Replacement Sorting, Blocked I/O and Double Buffering 

Using B+ Trees for External Sorting 

  



Linear Hashing 
 Another way of adapting gracefully to insertions and 

deletions (i.e., pursuing dynamic hashing) is to use 
Linear Hashing (LH) 
 

 In contrast to Extendible Hashing, LH 
 Does not require a directory 
 Deals naturally with collisions 
 Offers a lot of flexibility w.r.t the timing of bucket split 

(allowing trading off greater overflow chains for higher 
average space utilization) 
 

 
 
 

 
 
 



How Linear Hashing Works? 
 LH uses a family of hash functions h0, h1, h2, ... 
 hi(key) = h(key) mod(2iN);  N = initial # buckets 

 
 h is some hash function (range is not 0 to N-1) 

 
 hi+1 doubles the range of hi (this is similar to 

directory doubling) 
 
 If N = 2d0, for some d0, hi consists of applying h and 

looking at the last di bits, where di = d0 + i 
 
 

 
 
 

 
 
 



How Linear Hashing Works? (Cont’d) 
 LH uses overflow pages, and chooses buckets to split in 

a round-robin fashion 
 

 Splitting proceeds in “rounds”   
 A round ends when all NR  

(for round R) initial  
buckets are split 

 Buckets 0 to Next-1  
have been split;   
Next to NR yet to be split 

 Current round number  
is referred to as Level 
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Linear Hashing: Searching For Entries 
 To find bucket for data entry r, find hLevel(r): 
 If hLevel(r) in range `Next to NR’ , r belongs there 
 Else, r could belong to bucket hLevel(r) or bucket  

hLevel(r) + NR; must apply hLevel+1(r) to find out 
 

 Example: search for 5* 
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Linear Hashing: Inserting Entries 
 Find bucket as in search 

 If the bucket to insert the data entry into is full: 
 Add an overflow page and insert data entry 
 (Maybe) Split Next bucket and increment Next 

 
 Some points to Keep in mind: 
 Unlike Extendible Hashing, when an insert triggers a split, the 

bucket into which the data entry is inserted is not necessarily 
the bucket that is split 

 
 As in Static Hashing, an overflow page is added to store the 

newly inserted data entry  
 

 However, since the bucket to split is chosen in a round-robin 
fashion, eventually all buckets will be split  

 
 

 

 
 
 

 
 
 



Linear Hashing: Inserting Entries 
 Example: insert 43* 
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Linear Hashing: Inserting Entries 
 Example: insert 43* 
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Linear Hashing: Inserting Entries 
 Example: insert 43* 
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Linear Hashing: Inserting Entries 
 Example: insert 43* 
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Linear Hashing: Inserting Entries 
 Another Example: insert 50* 
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Linear Hashing: Inserting Entries 
 Another Example: insert 50* 
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Linear Hashing: Inserting Entries 
 Another Example: insert 50* 
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Linear Hashing: Inserting Entries 
 Another Example: insert 50* 
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Linear Hashing: Deleting Entries 

 Deletion is essentially the inverse of insertion 
 

 If the last bucket in the file is empty, it can be removed and 
Next can be decremented 
 

 If Next is zero and the last bucket becomes empty  
 Next is made to point to bucket M/2 -1 (where M is the current 

number of buckets) 
 Level is decremented 
 The empty bucket is removed 

 

 The insertion examples can be worked out backwards as 
examples of deletions! 
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When Does A DBMS Sort Data? 

 Users may want answers in some order 
 SELECT FROM student ORDER BY name 
 SELECT  S.rating, MIN (S.age) FROM Sailors S GROUP BY  S.rating 
 

 Bulk loading a B+ tree index involves sorting 
 

 Sorting is useful in eliminating duplicates records 
 

 The Sort-Merge Join algorithm involves sorting  
(next session!) 
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In-Memory vs. External Sorting 

 Assume we want to sort 60GB of data on a machine 
with only 8GB of RAM 
 In-Memory Sort (e.g., Quicksort) ? 
 Yes, but data do not fit in memory 

What about relying on virtual memory? 
 
 In this case, external sorting is needed 
 In-memory sorting is orthogonal to external sorting! 
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A Simple Two-Way Merge Sort 

 IDEA: Sort sub-files that can fit in memory and merge 
 

 Let us refer to each sorted sub-file as a run 
 

 Algorithm: 
 Pass 1: Read a page into memory, sort it, write it 

 1-page runs are produced 

 Passes 2, 3, etc.,: Merge pairs (hence, 2-way) of runs 
to produce longer runs until only one run is left 
 
 

 



A Simple Two-Way Merge Sort 

 Algorithm: 
 Pass 1: Read a page into memory, sort it, write it 

 How many buffer pages are needed?  
 Passes 2, 3, etc.,: Merge pairs (hence, 2-way) of runs to 

produce longer runs until only one run is left 
 How many buffer pages are needed?  
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2-Way Merge Sort: An Example 
Input File 

1-Page Runs 

2-Page Runs 

4-Page Runs 

8-Page Runs 
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2-Way Merge Sort: I/O Cost Analysis 
 If the number of pages in the input file is 2k 

 How many runs are produced in pass 0 and of what size? 
 2k  1-page runs 

 How many runs are produced in pass 1 and of what size? 
 2k-1  2-page runs 

 How many runs are produced in pass 2 and of what size? 
 2k-2 4-page runs 

 How many runs are produced in pass k and of what size? 
 2k-k 2k-page runs (or 1 run of size 2k) 

 For N number of pages, how many passes are incurred? 
   

 How many pages do we read and write in each pass? 
 2N 

 What is the overall cost? 
 

    
 

 
 
 

  1log2 +N

  )1log(2 2 +× NN



2-Way Merge Sort: An Example 
Input File 

1-Page Runs 

2-Page Runs 

4-Page Runs 

8-Page Runs 

PASS 0 

PASS 1 

PASS 2 

PASS 3 

9 

3,4 6,2 9,4 8,7 5,6 3,1 2 

3,4 5,6 2,6 4,9 7,8 1,3 2 
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1,3 
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Formula Check: 
               
 

= (2 × 8) × (3 + 1) = 64 I/Os 
Correct! 

  )1log(2 2 +× NN

  18log2 +

= 4 passes 
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B-Way Merge Sort 

 How can we sort a file with N pages using B buffer pages? 
 Pass 0: use B buffer pages 

 This will produce                 sorted B-page runs 

 Pass 2, …,  etc.: merge B-1 runs 
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B-Way Merge Sort: I/O Cost Analysis 
 I/O cost = 2N × Number of passes  

 
 Number of passes =  

 
 Assume the previous example (i.e., 8 pages), but using 

5 buffer pages (instead of 2) 
 I/O cost =  32 (as opposed to 64) 

 
 Therefore, increasing the number of buffer pages 

minimizes the number of passes and accordingly the 
I/O cost! 
 

 
 
 
 

  1 1+ −log /B N B



Number of Passes of B-Way Sort 
          N B=3 B=5 B=9 B=17 B=129 B=257 
100 7 4 3 2 1 1 
1,000 10 5 4 3 2 2 
10,000 13 7 5 4 2 2 
100,000 17 9 6 5 3 3 
1,000,000 20 10 7 5 3 3 
10,000,000 23 12 8 6 4 3 
100,000,000 26 14 9 7 4 4 
1,000,000,000 30 15 10 8 5 4 

 

 

High Fan-in during merging is crucial! 

How else can we minimize I/O cost? 
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Replacement Sort 
 With a more aggressive implementation of B-way sort, 

we can write out runs of ~2×B internally sorted pages 
 This is referred to as replacement sort 
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Replacement Sort 
 With a more aggressive implementation of B-way sort, 

we can write out runs of ~2×B internally sorted pages 
 This is referred to as replacement sort 
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Blocked I/O and Double Buffering 
 So far, we assumed random disk access 

 
 Would cost change if we assume that reads and writes 

are done sequentially? 
 Yes 

 

 How can we incorporate this fact into our  
cost model? 
 Use bigger units (this is referred to as Blocked I/O) 
 Mask I/O delays through pre-fetching (this is 

referred to as double buffering) 
 
 

 
 



Blocked I/O 
 Normally, we go with‘B’ buffers of size (say) 1 page 
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Blocked I/O 
 Normally, we go with‘B’ buffers of size (say) 1 page 
 INSTEAD: let us go with B/b buffers, of size ‘b’ pages 
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Blocked I/O 
 Normally, we go with‘B’ buffers of size (say) 1 page 
 INSTEAD: let us go with B/b buffers, of size ‘b’ pages 

 
 What is the main advantage? 
 Fewer random accesses (as some of the page will be 

arranged sequentially!) 
 

 What is the main disadvantage? 
 Smaller fan-out and accordingly larger number of passes!  

 
 
 
 

 

 



Double Buffering 
 Normally, when, say ‘INPUT1’ is exhausted 
 We issue a ‘read’ request and 
 We wait … 
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Double Buffering 
 INSTEAD: pre-fetch INPUT1’ into a `shadow block’ 
 When INPUT1 is exhausted, issue a ‘read’ 
 BUT, also proceed with INPUT1’ 
 Thus, the CPU can never go idle! 
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Using B+ Trees for External Sorting 
 Scenario: the relation to be sorted has a B+ tree 

index on its primary key 
 

 IDEA: retrieve records in order by traversing  
leaf pages 
 

 Is this a good idea? 
 What if the B+ tree is clustered? 
 What if the B+ tree in un-clustered? 
 What about different indexing alternatives? 
 

 
 



Using Clustered B+ Trees for Sorting 
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 What if Alternative (1) is in use? 
 Cost: root to the left-most leaf, then retrieve all leaf pages 

 What if Alternative (2) or (3) is in use? 
 Cost: root to the left-most leaf, then fetch each page just once  

 
 

 



Using Un-clustered B+ Trees for Sorting 

 
 
 
 
 
 

 
 What if Alternative (1) is in use? 
 Cost: root to the left-most leaf, then retrieve all leaf pages 

 What if Alternative (2) or (3) is in use? 
 Cost: root to the left-most leaf, then fetch pages 

 Worst-case: 1 I/O per each data record! 
 
 
 

(Directs search) 

Data Records 

Index 

Data Entries 
("Sequence set") 



Using B+ Trees for External Sorting 
 Scenario: the relation to be sorted has a B+ tree 

index on its primary key 
 

 IDEA: Can retrieve records in order by traversing 
leaf pages 
 

 Is this a good idea? 
 What if the B+ tree is clustered? 
 Good idea! 

 What if the B+ tree in un-clustered? 
 Could be a very bad idea! 

 
 
 



Summary 
 External sorting is important; a DBMS may dedicate 

part of its buffer pool for sorting! 
 

 External merge sort minimizes disk I/O cost: 
 Pass 0: Produces sorted runs of size B (# buffer pages). 

Later passes: merge runs 
 # of runs merged at a time depends on B, and block size 

 Larger block size means less I/O cost per page 
 Larger block size means smaller # runs merged 

 In practice, # of runs is rarely more than 2 or 3 
 

 Clustered B+ tree is good for sorting; un-clustered tree is 
usually very bad! 
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