
Database Applications (15-415)

DBMS Internals- Part V
Lecture 13, March 10, 2014

Mohammad Hammoud

Today…

Welcome Back from Spring Break!

Today…
 Last Session:
 DBMS Internals- Part IV
 Tree-based (i.e., B+ Tree) and Hash-based (i.e.,

Extendible Hashing) indexes

 Today’s Session:
 DBMS Internals- Part V
 Hash-based indexes (Cont’d) and External Sorting

 Announcements:
 Project 1 grades are out
 Midterm grades are out
 Project 2 is due on March 13 by midnight.

DBMS Layers

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Continued…

Outline
Linear Hashing

Why Sorting?

In-Memory vs. External Sorting

A Simple 2-Way External Merge Sorting

General External Merge Sorting

Optimizations: Replacement Sorting, Blocked I/O and Double Buffering

Using B+ Trees for External Sorting

Linear Hashing
 Another way of adapting gracefully to insertions and

deletions (i.e., pursuing dynamic hashing) is to use
Linear Hashing (LH)

 In contrast to Extendible Hashing, LH
 Does not require a directory
 Deals naturally with collisions
 Offers a lot of flexibility w.r.t the timing of bucket split

(allowing trading off greater overflow chains for higher
average space utilization)

How Linear Hashing Works?
 LH uses a family of hash functions h0, h1, h2, ...
 hi(key) = h(key) mod(2iN); N = initial # buckets

 h is some hash function (range is not 0 to N-1)

 hi+1 doubles the range of hi (this is similar to

directory doubling)

 If N = 2d0, for some d0, hi consists of applying h and

looking at the last di bits, where di = d0 + i

How Linear Hashing Works? (Cont’d)
 LH uses overflow pages, and chooses buckets to split in

a round-robin fashion

 Splitting proceeds in “rounds”
 A round ends when all NR

(for round R) initial
buckets are split

 Buckets 0 to Next-1
have been split;
Next to NR yet to be split

 Current round number
is referred to as Level

Level h

Buckets that existed at the
beginning of this round:

this is the range of

Next

Buckets split
in this round

‘split image’
Buckets created
in this round

Linear Hashing: Searching For Entries
 To find bucket for data entry r, find hLevel(r):
 If hLevel(r) in range `Next to NR’ , r belongs there
 Else, r could belong to bucket hLevel(r) or bucket

hLevel(r) + NR; must apply hLevel+1(r) to find out

 Example: search for 5*

0
h h

1

00

01

10

11

000

001

010

011

Next=0
PRIMARY

PAGES

Data entry r
with h(r)=5

Primary
bucket page

44* 36* 32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

Level=0, N=4

Level = 0 h0

5* = 101 01

Linear Hashing: Inserting Entries
 Find bucket as in search

 If the bucket to insert the data entry into is full:
 Add an overflow page and insert data entry
 (Maybe) Split Next bucket and increment Next

 Some points to Keep in mind:
 Unlike Extendible Hashing, when an insert triggers a split, the

bucket into which the data entry is inserted is not necessarily
the bucket that is split

 As in Static Hashing, an overflow page is added to store the

newly inserted data entry

 However, since the bucket to split is chosen in a round-robin
fashion, eventually all buckets will be split

Linear Hashing: Inserting Entries
 Example: insert 43*

0
h h

1

Level=0

00

01

10

11

000

001

010

011

Next=0
PRIMARY

PAGES

44* 36* 32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

Level = 0 h0

43* = 101011 11

Add an overflow page and
insert data entry

Linear Hashing: Inserting Entries
 Example: insert 43*

0
h h

1

00

01

10

11

000

001

010

011

Next=0
PRIMARY

PAGES

44* 36* 32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

Level = 0 h0

43* = 101011 11

43*

OVERFLOW
PAGES

Split Next bucket and
increment Next

Level=0

Linear Hashing: Inserting Entries
 Example: insert 43*

Next=0
PRIMARY

PAGES

32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

Level = 0 h0

43* = 101011 11

43*

OVERFLOW
PAGES

44* 36*

Almost there…

0
h h

1

00

01

10

11

000

001

010

011

00 100

Level=0

Linear Hashing: Inserting Entries
 Example: insert 43*

Next=1

PRIMARY
PAGES

32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

Level = 0 h0

43* = 101011 11

43*

OVERFLOW
PAGES

44* 36*

FINAL STATE!

0
h h

1

00

01

10

11

000

001

010

011

00 100

Level=0

Linear Hashing: Inserting Entries
 Another Example: insert 50*

Level = 0 h0

50* = 110010 10

Add an overflow page and
insert data entry

0 h h 1

22*

00

01

10

11

000

001

010

011

00 100

Next=3

01

10

101

110

Level=0
PRIMARY
PAGES

OVERFLOW
PAGES

32*

9*

5*

14*

25*

66* 10* 18* 34*

35* 31* 7* 11* 43*

44* 36*

37* 29*

30*

Linear Hashing: Inserting Entries
 Another Example: insert 50*

Level = 0 h0

50* = 110010 10
0 h h 1

22*

00

01

10

11

000

001

010

011

00 100

Next=3

01

10

101

110

PRIMARY
PAGES

OVERFLOW
PAGES

32*

9*

5*

14*

25*

66* 10* 18* 34*

35* 31* 7* 11* 43*

44* 36*

37* 29*

30*

50*

Split Next bucket and
increment Next

Level=0

Linear Hashing: Inserting Entries
 Another Example: insert 50*

Level = 0 h0

50* = 110010 10

Almost there…

0 h h 1

37*

00

01

10

11

000

001

010

011

00 100

10

101

110

Next=0

111

11

PRIMARY
PAGES

OVERFLOW
PAGES

11

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31* 7*

50*

Level=0

Linear Hashing: Inserting Entries
 Another Example: insert 50*

Level = 0 h0

50* = 110010 10

FINAL STATE!

0 h h 1

37*

00

01

10

11

000

001

010

011

00 100

10

101

110

Next=0

111

11

PRIMARY
PAGES

OVERFLOW
PAGES

11

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31* 7*

50*

Level=1

Linear Hashing: Deleting Entries

 Deletion is essentially the inverse of insertion

 If the last bucket in the file is empty, it can be removed and
Next can be decremented

 If Next is zero and the last bucket becomes empty
 Next is made to point to bucket M/2 -1 (where M is the current

number of buckets)
 Level is decremented
 The empty bucket is removed

 The insertion examples can be worked out backwards as
examples of deletions!

DBMS Layers

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

But, before we will
discuss “Sorting”

Outline
Linear Hashing

Why Sorting?

In-Memory vs. External Sorting

A Simple 2-Way External Merge Sorting

General External Merge Sorting

Optimizations: Replacement Sorting, Blocked I/O and Double Buffering

Using B+ Trees for External Sorting

When Does A DBMS Sort Data?

 Users may want answers in some order
 SELECT FROM student ORDER BY name
 SELECT S.rating, MIN (S.age) FROM Sailors S GROUP BY S.rating

 Bulk loading a B+ tree index involves sorting

 Sorting is useful in eliminating duplicates records

 The Sort-Merge Join algorithm involves sorting
(next session!)

Outline
Linear Hashing

Why Sorting?

In-Memory vs. External Sorting

A Simple 2-Way External Merge Sorting

General External Merge Sorting

Optimizations: Replacement Sorting, Blocked I/O and Double Buffering

Using B+ Trees for External Sorting

In-Memory vs. External Sorting

 Assume we want to sort 60GB of data on a machine
with only 8GB of RAM
 In-Memory Sort (e.g., Quicksort) ?
 Yes, but data do not fit in memory

What about relying on virtual memory?

 In this case, external sorting is needed
 In-memory sorting is orthogonal to external sorting!

Outline
Linear Hashing

Why Sorting?

In-Memory vs. External Sorting

A Simple 2-Way External Merge Sorting

General External Merge Sorting

Optimizations: Replacement Sorting, Blocked I/O and Double Buffering

Using B+ Trees for External Sorting

A Simple Two-Way Merge Sort

 IDEA: Sort sub-files that can fit in memory and merge

 Let us refer to each sorted sub-file as a run

 Algorithm:
 Pass 1: Read a page into memory, sort it, write it

 1-page runs are produced

 Passes 2, 3, etc.,: Merge pairs (hence, 2-way) of runs
to produce longer runs until only one run is left

A Simple Two-Way Merge Sort

 Algorithm:
 Pass 1: Read a page into memory, sort it, write it

 How many buffer pages are needed?
 Passes 2, 3, etc.,: Merge pairs (hence, 2-way) of runs to

produce longer runs until only one run is left
 How many buffer pages are needed?

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

Disk Disk

ONE

THREE

2-Way Merge Sort: An Example
Input File

1-Page Runs

2-Page Runs

4-Page Runs

8-Page Runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,6 2,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3
4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4
4,5
6,6
7,8

2-Way Merge Sort: I/O Cost Analysis
 If the number of pages in the input file is 2k

 How many runs are produced in pass 0 and of what size?
 2k 1-page runs

 How many runs are produced in pass 1 and of what size?
 2k-1 2-page runs

 How many runs are produced in pass 2 and of what size?
 2k-2 4-page runs

 How many runs are produced in pass k and of what size?
 2k-k 2k-page runs (or 1 run of size 2k)

 For N number of pages, how many passes are incurred?

 How many pages do we read and write in each pass?
 2N

 What is the overall cost?

 1log2 +N

)1log(2 2 +× NN

2-Way Merge Sort: An Example
Input File

1-Page Runs

2-Page Runs

4-Page Runs

8-Page Runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,6 2,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3
4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4
4,5
6,6
7,8

Formula Check:

= (2 × 8) × (3 + 1) = 64 I/Os
Correct!

)1log(2 2 +× NN

 18log2 +

= 4 passes

Outline
Linear Hashing

Why Sorting?

In-Memory vs. External Sorting

A Simple 2-Way External Merge Sorting

General External Merge Sorting

Optimizations: Replacement Sorting, Blocked I/O and Double Buffering

Using B+ Trees for External Sorting

B-Way Merge Sort

 How can we sort a file with N pages using B buffer pages?
 Pass 0: use B buffer pages

 This will produce sorted B-page runs

 Pass 2, …, etc.: merge B-1 runs

 N B/

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

Disk Disk

INPUT 2
.

B-Way Merge Sort: I/O Cost Analysis
 I/O cost = 2N × Number of passes

 Number of passes =

 Assume the previous example (i.e., 8 pages), but using

5 buffer pages (instead of 2)
 I/O cost = 32 (as opposed to 64)

 Therefore, increasing the number of buffer pages

minimizes the number of passes and accordingly the
I/O cost!

 1 1+ −log /B N B

Number of Passes of B-Way Sort
 N B=3 B=5 B=9 B=17 B=129 B=257
100 7 4 3 2 1 1
1,000 10 5 4 3 2 2
10,000 13 7 5 4 2 2
100,000 17 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10,000,000 23 12 8 6 4 3
100,000,000 26 14 9 7 4 4
1,000,000,000 30 15 10 8 5 4

High Fan-in during merging is crucial!

How else can we minimize I/O cost?

Outline
Linear Hashing

Why Sorting?

In-Memory vs. External Sorting

A Simple 2-Way External Merge Sorting

General External Merge Sorting

Optimizations: Replacement Sorting, Blocked I/O and Double Buffering

Using B+ Trees for External Sorting

Replacement Sort
 With a more aggressive implementation of B-way sort,

we can write out runs of ~2×B internally sorted pages
 This is referred to as replacement sort

 12

4

INPUT

8

10

CURRENT SET

2

3

5

OUTPUT

IDEA: Pick the tuple in the current set with the smallest value that is greater than
the largest value in the output buffer and append it to the output buffer

Replacement Sort
 With a more aggressive implementation of B-way sort,

we can write out runs of ~2×B internally sorted pages
 This is referred to as replacement sort

 12

4

INPUT

8

10

CURRENT SET

2

3

5

OUTPUT

When do we terminate the current run and start a new one?

Blocked I/O and Double Buffering
 So far, we assumed random disk access

 Would cost change if we assume that reads and writes

are done sequentially?
 Yes

 How can we incorporate this fact into our
cost model?
 Use bigger units (this is referred to as Blocked I/O)
 Mask I/O delays through pre-fetching (this is

referred to as double buffering)

Blocked I/O
 Normally, we go with‘B’ buffers of size (say) 1 page

INPUT 1

INPUT 5

OUTPUT

Disk Disk

INPUT 2

.

Blocked I/O
 Normally, we go with‘B’ buffers of size (say) 1 page
 INSTEAD: let us go with B/b buffers, of size ‘b’ pages

3 Main memory buffers

INPUT 1

INPUT 2

OUTPUT

Disk Disk

.

Blocked I/O
 Normally, we go with‘B’ buffers of size (say) 1 page
 INSTEAD: let us go with B/b buffers, of size ‘b’ pages

 What is the main advantage?
 Fewer random accesses (as some of the page will be

arranged sequentially!)

 What is the main disadvantage?
 Smaller fan-out and accordingly larger number of passes!

Double Buffering
 Normally, when, say ‘INPUT1’ is exhausted
 We issue a ‘read’ request and
 We wait …

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

Disk Disk

INPUT 2

.

Double Buffering
 INSTEAD: pre-fetch INPUT1’ into a `shadow block’
 When INPUT1 is exhausted, issue a ‘read’
 BUT, also proceed with INPUT1’
 Thus, the CPU can never go idle!

OUTPUT

OUTPUT'

Disk Disk

INPUT 1

INPUT k

INPUT 2

INPUT 1'

INPUT 2'

INPUT k'

block size
b

B main memory buffers, k-way merge

Outline
Linear Hashing

Why Sorting?

In-Memory vs. External Sorting

A Simple 2-Way External Merge Sorting

General External Merge Sorting

Optimizations: Replacement Sorting, Blocked I/O and Double Buffering

Using B+ Trees for External Sorting

Using B+ Trees for External Sorting
 Scenario: the relation to be sorted has a B+ tree

index on its primary key

 IDEA: retrieve records in order by traversing
leaf pages

 Is this a good idea?
 What if the B+ tree is clustered?
 What if the B+ tree in un-clustered?
 What about different indexing alternatives?

Using Clustered B+ Trees for Sorting

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

 What if Alternative (1) is in use?
 Cost: root to the left-most leaf, then retrieve all leaf pages

 What if Alternative (2) or (3) is in use?
 Cost: root to the left-most leaf, then fetch each page just once

Using Un-clustered B+ Trees for Sorting

 What if Alternative (1) is in use?
 Cost: root to the left-most leaf, then retrieve all leaf pages

 What if Alternative (2) or (3) is in use?
 Cost: root to the left-most leaf, then fetch pages

 Worst-case: 1 I/O per each data record!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

Using B+ Trees for External Sorting
 Scenario: the relation to be sorted has a B+ tree

index on its primary key

 IDEA: Can retrieve records in order by traversing
leaf pages

 Is this a good idea?
 What if the B+ tree is clustered?
 Good idea!

 What if the B+ tree in un-clustered?
 Could be a very bad idea!

Summary
 External sorting is important; a DBMS may dedicate

part of its buffer pool for sorting!

 External merge sort minimizes disk I/O cost:
 Pass 0: Produces sorted runs of size B (# buffer pages).

Later passes: merge runs
 # of runs merged at a time depends on B, and block size

 Larger block size means less I/O cost per page
 Larger block size means smaller # runs merged

 In practice, # of runs is rarely more than 2 or 3

 Clustered B+ tree is good for sorting; un-clustered tree is
usually very bad!

Next Class

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

	Database Applications (15-415)��DBMS Internals- Part V�Lecture 13, March 10, 2014
	Today…
	Today…
	DBMS Layers
	Outline
	Linear Hashing
	How Linear Hashing Works?
	How Linear Hashing Works? (Cont’d)
	Linear Hashing: Searching For Entries
	Linear Hashing: Inserting Entries
	Linear Hashing: Inserting Entries
	Linear Hashing: Inserting Entries
	Linear Hashing: Inserting Entries
	Linear Hashing: Inserting Entries
	Linear Hashing: Inserting Entries
	Linear Hashing: Inserting Entries
	Linear Hashing: Inserting Entries
	Linear Hashing: Inserting Entries
	Linear Hashing: Deleting Entries
	DBMS Layers
	Outline
	When Does A DBMS Sort Data?
	Outline
	In-Memory vs. External Sorting
	Outline
	A Simple Two-Way Merge Sort
	A Simple Two-Way Merge Sort
	2-Way Merge Sort: An Example
	2-Way Merge Sort: I/O Cost Analysis
	2-Way Merge Sort: An Example
	Outline
	B-Way Merge Sort
	B-Way Merge Sort: I/O Cost Analysis
	Number of Passes of B-Way Sort
	Outline
	Replacement Sort
	Replacement Sort
	Blocked I/O and Double Buffering
	Blocked I/O
	Blocked I/O
	Blocked I/O
	Double Buffering
	Double Buffering
	Outline
	Using B+ Trees for External Sorting
	Using Clustered B+ Trees for Sorting
	Using Un-clustered B+ Trees for Sorting
	Using B+ Trees for External Sorting
	Summary
	Next Class

