
Database Applications (15-415)

DBMS Internals- Part IV
Lecture 12, February 24, 2014

Mohammad Hammoud

Today…
 Last Session:
 DBMS Internals- Part III
 Tree-based indexes: ISAM, B and B+ trees

 Today’s Session:
 DBMS Internals- Part IV
 Tree-based (B+ tree- cont’d) and Hash-based indexes

 Announcements:
 PS2 grades are out
 PS3 is now posted. It is due on March 03, 2014
 The midterm exam is on Wednesday Feb 26 (all material

are included)

DBMS Layers

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Continued…

Outline

B+ Trees with Duplicates

B+ Trees with Key Compression

Bulk Loading of a B+ Tree

A Primer on Hash-Based Indexing

Static Hashing

Extendible Hashing

Linear Hashing



B+ Trees With Duplicates
 Thus far, we only discussed unique indices (no duplicate

keys- i.e., several data entries with the same key value)

 How can we handle duplicate keys?
1. Use overflow pages to keep all entries of a given key value

on a single leaf page (natural for ISAM)

2. Treat duplicates like any other entries
 Several leaf pages will contain entries of a given key value
 How to search/delete?

3. Make the rid value part of the search key

Outline

B+ Trees with Duplicates

B+ Trees with Key Compression

Bulk Loading of a B+ Tree

A Primer on Hash-Based Indexing

Static Hashing

Extendible Hashing

Linear Hashing



The Height of a B+ Tree
 What are the factors that define the height of a B+ tree?

 Number of data entries
 The order of occupancy

 The order of occupancy dictates the fan-out of the tree

 The height of the tree is proportional to logfan-out (# of DEs)

 What is the number of disk I/Os to retrieve a data entry?

 logfan-out (# of DEs)

 How to minimize the height?
 Maximize the fan-out

Towards Maximizing the Fan-Out?

 What does an index entry contain?
 A search key
 A page pointer

 Hence, the size of an index entry depends primarily on the
size of the search key value!

 What if the search key values are very long?
 Not many index entries will fit on a page
 Fan-out will be low
 The height of the tree will be large

Key Compression: A Way to Maximize
the Fan-Out

 How can we reduce the size of search key values?
 Apply key compression, especially that keys are only

used to direct traffic to the appropriate leaves

David Smith Devarakonda

< David Smith >= David Smith && < Devarakonda

Da De

< Da >= Da && < De

More room
for additional
index entries
in the same

page!

Is this fully correct?

Key Compression: A Way to Maximize
the Fan-Out (Cont’d)

 What about the following example?

David Smith Devarakonda

Dante Wu Darius Rex

Danial Lee

Davey Jones

< David Smith

Dav De Dan

> Dav

To ensure correct semantics, the largest key value in the left sub-tree
and the smallest key value in the right sub-tree must be examined!

Dante Wu Darius Rex Davey Jones

< Dav

Outline

B+ Trees with Duplicates

B+ Trees with Key Compression

Bulk Loading of a B+ Tree

A Primer on Hash-Based Indexing

Static Hashing

Extendible Hashing

Linear Hashing



B+ Tree: Bulk Loading

 Assume a collection of data records with an existing B+ tree
index on it
 How to add a new record to it?
 Use the B+ tree insert() function

 What if we have a collection of data records for which we
want to create a B+ tree index? (i.e., we want to bulk load
the B+ tree)
 Starting with an empty tree and using the insert() function

for each data record, one at a time, is expensive!
 This is because for each entry we would require starting again

from the root and going down to the appropriate leaf page

B+ Tree: Bulk Loading

 What to do?
 Initialization: Sort all data entries, insert pointer to first (leaf)

page in a new (root) page

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root

B+ Tree: Bulk Loading

 What to do?
 Add one entry to the root page for each subsequent page of

the sorted data entries (i.e., <lowest key value on page,
pointer to the page>)

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root

B+ Tree: Bulk Loading

 What to do?
 Add one entry to the root page for each subsequent page of

the sorted data entries (i.e., <lowest key value on page,
pointer to the page>)

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Root
6

B+ Tree: Bulk Loading

 What to do?
 Add one entry to the root page for each subsequent page of

the sorted data entries (i.e., <lowest key value on page,
pointer to the page>)

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Root
6 10

B+ Tree: Bulk Loading

 What to do?
 Split the root and create a new root page

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Root
6 10

B+ Tree: Bulk Loading

 What to do?
 Split the root and create a new root page

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Root

6 12

10
‘push up’ the middle key

B+ Tree: Bulk Loading

 What to do?
 Continue by inserting entries into the right-most index page

just above the leaf page; split when fills up

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Root

6 12

10

B+ Tree: Bulk Loading

 What to do?
 Continue by inserting entries into the right-most index page

just above the leaf page; split when fills up

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Root

Data entry pages
not yet in B+ tree 35 23 12 6

10 20

B+ Tree: Bulk Loading

 What to do?
 Continue by inserting entries into the right-most index page

just above the leaf page; split when fills up

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree
Data entry pages

B+ Tree: Bulk Loading

 What is the cost of bulk loading?
1. Creating the leaf-level entries
 Scanning the data entries and writing out all the leaf-level

entries (i.e., K*)
 Hence, (R+E) I/Os, where R is the number of pages containing

data entries and E is the number of pages containing K*entries

2. Sorting leaf-level entries
 3E I/Os (when discussing sorting, we will see how)

3. Building the index from the sorted leaf-level entries
 The cost of writing out all index-level pages (will be an exercise

in the recitation)!

Outline

B+ Trees with Duplicates

B+ Trees with Key Compression

Bulk Loading of a B+ Tree

A Primer on Hash-Based Indexing

Static Hashing

Extendible Hashing

Linear Hashing



Hash-Based Indexing

 What indexing technique can we use to support range
searches (e.g., “Find s_name where gpa >= 3.0)?
 Tree-Based Indexing

 What about equality selections (e.g., “Find s_name

where sid = 102”?
 Tree-Based Indexing
 Hash-Based Indexing (cannot support range searches!)

 Hash-based indexing, however, proves to be very useful

in implementing relational operators (e.g., joins)

Outline

B+ Trees with Duplicates

B+ Trees with Key Compression

Bulk Loading of a B+ Tree

A Primer on Hash-Based Indexing

Static Hashing

Extendible Hashing

Linear Hashing



Static Hashing
 A hash structure (or table or file) is a generalization of

the simpler notion of an ordinary array
 In an array, an arbitrary position can be examined in O(1)

 A hash function h is used to map keys into a range of
bucket numbers

h(key) mod N

h
key

Primary bucket pages Overflow pages

2
0

N-1

With Static Hashing,
allocated sequentially
and never de-allocated

With Static Hashing,
allocated (as needed)
when corresponding
buckets become full

Static Hashing
 Data entries can be any of the three alternatives (A (1), A

(2) or A (3)- see previous lecture)

 Data entries can be sorted in buckets to speed up searches

 The hash function h is used to identify the bucket to which
a given key belongs and subsequently insert, delete or
locate a respective data record
 A hash function of the form h(key) = (a * key + b) works well

in practice

 A search ideally requires 1 disk I/O, while an insertion or a
deletion necessitates 2 disk I/Os

Static Hashing: Some Issues
 Similar to ISAM, the number of buckets is fixed!
 Cannot deal with insertions and deletions gracefully

 Long overflow chains can develop easily and degrade

performance!
 Pages can be initially kept only 80% full

 Dynamic hashing techniques can be used to fix
the problem
 Extendible Hashing (EH)
 Liner Hashing (LH)

Outline

B+ Trees with Duplicates

B+ Trees with Key Compression

Bulk Loading of a B+ Tree

A Primer on Hash-Based Indexing

Static Hashing

Extendible Hashing

Linear Hashing



Directory of Pointers
 How else (as opposed to overflow pages) can we add a

data record to a full bucket in a static hash file?
 Reorganize the table (e.g., by doubling the number of

buckets and redistributing the entries across the new
set of buckets)

 But, reading and writing all pages is expensive!

 In contrast, we can use a directory of pointers to buckets
 Buckets number can be doubled by doubling just the

directory and splitting only the bucket that overflowed
 The trick lies on how the hash function can be adjusted!

Extendible Hashing
 Extendible Hashing uses a directory of pointers to buckets

 The result of applying a hash

function h is treated as a
binary number and
the last d bits are
interpreted as an
offset into the directory

 d is referred to as the global depth
of the hash file and is kept as part
of the header of the file

00

01

10

11

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

2

GLOBAL DEPTH

Extendible Hashing: Searching for Entries
 To search for a data entry, apply a hash function h to the

key and take the last d bits of its binary representation to
get the bucket number

 Example: search for 5*

00

01

10

11

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5* 5 = 101

2

Extendible Hashing: Inserting Entries
 An entry can be inserted as follows:
 Find the appropriate bucket (as in search)

 Split the bucket if full and redistribute contents

(including the new entry to be inserted) across
the old bucket and its “split image”

 Double the directory if necessary

 Insert the given entry

Extendible Hashing: Inserting Entries
 Find the appropriate bucket (as in search), split the bucket

if full, double the directory if necessary and insert the
given entry

 Example: insert 13*

13*

00

01

10

11

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5* 13 = 1101

2

Extendible Hashing: Inserting Entries
 Find the appropriate bucket (as in search), split the bucket

if full, double the directory if necessary and insert the
given entry

 Example: insert 20*

13*

00

01

10

11

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5* 20 = 10100

FULL, hence, split and redistribute!
2

Extendible Hashing: Inserting Entries
 Find the appropriate bucket (as in search), split the bucket

if full, double the directory if necessary and insert the
given entry

 Example: insert 20*

13*
00

01

10

11

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

10*

1* 21*

32* 16*

15* 7* 19*

5*

20 = 10100

20* Bucket A2
(`split image'
of Bucket A)

4* 12*

2

Is this enough?

Extendible Hashing: Inserting Entries
 Find the appropriate bucket (as in search), split the bucket

if full, double the directory if necessary and insert the
given entry

 Example: insert 20*

13*
00

01

10

11

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

10*

1* 21*

32* 16*

15* 7* 19*

5*

20* Bucket A2
(`split image'
of Bucket A)

4* 12*

2

Double the directory and
increase the global depth

20 = 10100

Extendible Hashing: Inserting Entries
 Find the appropriate bucket (as in search), split the bucket

if full, double the directory if necessary and insert the
given entry

 Example: insert 20*

19*

0 00

001
010

011
1 00

101

110
111

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

32*

1* 5* 21* 13*

16*

10*

15* 7*

4* 20* 12*

GLOBAL DEPTH

These two bits indicate a data entry that
belongs to one of these two buckets

The third bit distinguishes between these
two buckets!

But, is it necessary always to
double the directory?

Extendible Hashing: Inserting Entries
 Find the appropriate bucket (as in search), split the bucket

if full, double the directory if necessary and insert the
given entry

 Example: insert 9*

9 = 1001

19*

000

001
010

011
100

101

110
111

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

32*

1* 5* 21* 13*

16*

10*

15* 7*

4* 20* 12*

GLOBAL DEPTH

FULL, hence, split!

Extendible Hashing: Inserting Entries
 Find the appropriate bucket (as in search), split the bucket

if full, double the directory if necessary and insert the
given entry

 Example: insert 9*

19*

000

001
010

011
100

101

110
111

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image‘ of A)

32*

1*

16*

10*

15* 7*

4* 20* 12*

GLOBAL DEPTH

Bucket B2
(`split image‘ of B)

5* 21* 13*

9*

Almost there…

9 = 1001

Extendible Hashing: Inserting Entries
 Find the appropriate bucket (as in search), split the bucket

if full, double the directory if necessary and insert the
given entry

 Example: insert 9*

19*

000

001
010

011
100

101

110
111

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image‘ of A)

32*

1*

16*

10*

15* 7*

4* 20* 12*

GLOBAL DEPTH

Bucket A2
(`split image‘ of A)

5* 21* 13*

9*

There was no need to
double the directory!

When NOT to double the
directory?

9 = 1001

Extendible Hashing: Inserting Entries
 Find the appropriate bucket (as in search), split the bucket

if full, double the directory if necessary and insert the
given entry

 Example: insert 9*

19*

000

001
010

011
100

101

110
111

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image‘ of A)

32*

1*

16*

10*

15* 7*

4* 20* 12*

GLOBAL DEPTH

Bucket A2
(`split image‘ of A)

5* 21* 13*

9*

If a bucket whose local depth
equals to the global depth is
split, the directory must be

doubled

3

2

2

3

3

LOCAL DEPTH

3

9 = 1001

Extendible Hashing: Inserting Entries
 Example: insert 9*

9 = 1001

19*

000

001
010

011
100

101

110
111

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

32*

1* 5* 21* 13*

16*

10*

15* 7*

4* 20* 12*

GLOBAL DEPTH

FULL, hence, split!
2

2

2

3

3

Repeat…

Because the local depth
(i.e., 2) is less than the

global depth (i.e., 3), NO
need to double the

directory

LOCAL DEPTH

Extendible Hashing: Inserting Entries
 Example: insert 9*

 19*

000

001
010

011
100

101

110
111

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image‘ of A)

32*

1*

16*

10*

15* 7*

4* 20* 12*

GLOBAL DEPTH

Bucket A2
(`split image‘ of A)

5* 21* 13*

9*

2

2

2

3

3

LOCAL DEPTH

3

9 = 1001

Repeat…

Extendible Hashing: Inserting Entries
 Example: insert 9*

 19*

000

001
010

011
100

101

110
111

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image‘ of A)

32*

1*

16*

10*

15* 7*

4* 20* 12*

GLOBAL DEPTH

Bucket A2
(`split image‘ of A)

5* 21* 13*

9*

2

2

2

3

3

LOCAL DEPTH

3

FINAL STATE!

9 = 1001

Repeat…

Extendible Hashing: Inserting Entries
 Example: insert 20*

 Because the local depth

and the global depth are
both 2, we should double

the directory!

20 = 10100

13* 00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

FULL, hence, split! Repeat…

Extendible Hashing: Inserting Entries
 Example: insert 20*

Is this enough?

20*

00
01
10
11

2 2

2

2

LOCAL DEPTH 2

2

DIRECTORY

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

1* 5* 21* 13*

32* 16*

10*

15* 7* 19*

4* 12*

Repeat…

20 = 10100

Extendible Hashing: Inserting Entries
 Example: insert 20*

19*

2

2

2

000

001
010

011
100

101

110
111

3

2

2
DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

32*

1* 5* 21* 13*

16*

10*

15* 7*

4* 20* 12*

LOCAL DEPTH

GLOBAL DEPTH
Repeat…

Is this enough?

Extendible Hashing: Inserting Entries
 Example: insert 20*

19*

2

2

2

000

001
010

011
100

101

110
111

3

3

3
DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

32*

1* 5* 21* 13*

16*

10*

15* 7*

4* 20* 12*

LOCAL DEPTH

GLOBAL DEPTH
Repeat…

FINAL STATE!

Extendible Hashing: Deleting Entries
 For a deletion, the data entry is located and removed

 If the deletion leaves the bucket empty, it can be merged

with its split image
 Merging buckets decreases the local depth

 If each directory element points to the same bucket as its

split image, the directory can be halved and the global
depth decremented

 The insertion examples can be worked out backwards as
examples of deletions!

Outline

B+ Trees with Duplicates

B+ Trees with Key Compression

Bulk Loading of a B+ Tree

A Primer on Hash-Based Indexing

Static Hashing

Extendible Hashing

Linear Hashing 

Linear Hashing
 Another way of adapting gracefully to insertions and

deletions (i.e., pursuing dynamic hashing) is to use
Linear Hashing (LH)

 In contrast to Extendible Hashing, LH
 Does not require a directory
 Deals naturally with collisions
 Offers a lot of flexibility w.r.t the timing of bucket split

(allowing trading off greater overflow chains for higher
average space utilization)

How Linear Hashing Works?
 LH uses a family of hash functions h0, h1, h2, ...
 hi(key) = h(key) mod(2iN); N = initial # buckets

 h is some hash function (range is not 0 to N-1)

 If N = 2d0, for some d0, hi consists of applying h and

looking at the last di bits, where di = d0 + I

 hi+1 doubles the range of hi (similar to directory
doubling)

How Linear Hashing Works? (Cont’d)
 LH uses overflow pages, and chooses buckets to split in

a round-robin fashion

 Splitting proceeds in “rounds”
 A round ends when all NR

(for round R) initial
buckets are split

 Buckets 0 to Next-1
have been split;
Next to NR yet to be split

 Current round number
is referred to as Level

Level h

Buckets that existed at the
beginning of this round:

this is the range of

Next

Buckets split
in this round

‘split image’
Buckets created
in this round

Linear Hashing: Searching For Entries
 To find bucket for data entry r, find hLevel(r):
 If hLevel(r) in range `Next to NR’ , r belongs there
 Else, r could belong to bucket hLevel(r) or bucket

hLevel(r) + NR; must apply hLevel+1(r) to find out

 Example: search for 5*

0
h h

1

00

01

10

11

000

001

010

011

Next=0
PRIMARY

PAGES

Data entry r
with h(r)=5

Primary
bucket page

44* 36* 32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

Level=0, N=4

Level = 0  h0

5* = 101  01

Linear Hashing: Inserting Entries
 Find bucket as in search

 If the bucket to insert the data entry into is full:
 Add an overflow page and insert data entry
 (Maybe) Split Next bucket and increment Next

 Some points to Keep in mind:
 Unlike Extendible Hashing, when an insert triggers a split, the

bucket into which the data entry is inserted is not necessarily
the bucket that is split

 As in Static Hashing, an overflow page is added to store the

newly inserted data entry

 However, since the bucket to split is chosen in a round-robin
fashion, eventually all buckets will be split

Linear Hashing: Inserting Entries
 Example: insert 43*

0
h h

1

Level=0, N=4

00

01

10

11

000

001

010

011

Next=0
PRIMARY

PAGES

44* 36* 32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

Level = 0  h0

43* = 101011  11

Add an overflow page and
insert data entry

Linear Hashing: Inserting Entries
 Example: insert 43*

0
h h

1

Level=0, N=4

00

01

10

11

000

001

010

011

Next=0
PRIMARY

PAGES

44* 36* 32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

Level = 0  h0

43* = 101011  11

43*

OVERFLOW
PAGES

Split Next bucket and
increment Next

Linear Hashing: Inserting Entries
 Example: insert 43*

Level=0, N=4

Next=0
PRIMARY

PAGES

32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

Level = 0  h0

43* = 101011  11

43*

OVERFLOW
PAGES

44* 36*

Almost there…

0
h h

1

00

01

10

11

000

001

010

011

00 100

Linear Hashing: Inserting Entries
 Example: insert 43*

Level=0, N=4

Next=1

PRIMARY
PAGES

32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

Level = 0  h0

43* = 101011  11

43*

OVERFLOW
PAGES

44* 36*

FINAL STATE!

0
h h

1

00

01

10

11

000

001

010

011

00 100

Linear Hashing: Inserting Entries
 Another Example: insert 50*

Level = 0  h0

50* = 110010  10

Add an overflow page and
insert data entry

0 h h 1

22*

00

01

10

11

000

001

010

011

00 100

Next=3

01

10

101

110

Level=0, N= 4
PRIMARY
PAGES

OVERFLOW
PAGES

32*

9*

5*

14*

25*

66* 10* 18* 34*

35* 31* 7* 11* 43*

44* 36*

37* 29*

30*

Linear Hashing: Inserting Entries
 Another Example: insert 50*

Level = 0  h0

50* = 110010  10
0 h h 1

22*

00

01

10

11

000

001

010

011

00 100

Next=3

01

10

101

110

PRIMARY
PAGES

OVERFLOW
PAGES

32*

9*

5*

14*

25*

66* 10* 18* 34*

35* 31* 7* 11* 43*

44* 36*

37* 29*

30*

50*

Split Next bucket and
increment Next

Level=0, N= 4

Linear Hashing: Inserting Entries
 Another Example: insert 50*

Level = 0  h0

50* = 110010  10

Almost there…

0 h h 1

37*

00

01

10

11

000

001

010

011

00 100

10

101

110

Next=0

111

11

PRIMARY
PAGES

OVERFLOW
PAGES

11

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31* 7*

50*

Level=0

Linear Hashing: Inserting Entries
 Another Example: insert 50*

Level = 0  h0

50* = 110010  10

FINAL STATE!

0 h h 1

37*

00

01

10

11

000

001

010

011

00 100

10

101

110

Next=0

111

11

PRIMARY
PAGES

OVERFLOW
PAGES

11

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31* 7*

50*

Level=0

Linear Hashing: Deleting Entries

 Deletion is essentially the inverse of insertion

 If the last bucket in the file is empty, it can be removed and
Next can be decremented

 If Next is zero and the last bucket becomes empty
 Next is made to point to bucket M/2 -1 (where M is the current

number of buckets)
 Level is decremented
 The empty bucket is removed

 The insertion examples can be worked out backwards as
examples of deletions!

Next Class

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

	Database Applications (15-415)��DBMS Internals- Part IV�Lecture 12, February 24, 2014
	Today…
	DBMS Layers
	Outline
	B+ Trees With Duplicates
	Outline
	The Height of a B+ Tree
	Towards Maximizing the Fan-Out?
	Key Compression: A Way to Maximize the Fan-Out
	Key Compression: A Way to Maximize the Fan-Out (Cont’d)
	Outline
	B+ Tree: Bulk Loading
	B+ Tree: Bulk Loading
	B+ Tree: Bulk Loading
	B+ Tree: Bulk Loading
	B+ Tree: Bulk Loading
	B+ Tree: Bulk Loading
	B+ Tree: Bulk Loading
	B+ Tree: Bulk Loading
	B+ Tree: Bulk Loading
	B+ Tree: Bulk Loading
	B+ Tree: Bulk Loading
	Outline
	Hash-Based Indexing
	Outline
	Static Hashing
	Static Hashing
	Static Hashing: Some Issues
	Outline
	Directory of Pointers
	Extendible Hashing
	Extendible Hashing: Searching for Entries
	Extendible Hashing: Inserting Entries
	Extendible Hashing: Inserting Entries
	Extendible Hashing: Inserting Entries
	Extendible Hashing: Inserting Entries
	Extendible Hashing: Inserting Entries
	Extendible Hashing: Inserting Entries
	Extendible Hashing: Inserting Entries
	Extendible Hashing: Inserting Entries
	Extendible Hashing: Inserting Entries
	Extendible Hashing: Inserting Entries
	Extendible Hashing: Inserting Entries
	Extendible Hashing: Inserting Entries
	Extendible Hashing: Inserting Entries
	Extendible Hashing: Inserting Entries
	Extendible Hashing: Inserting Entries
	Extendible Hashing: Inserting Entries
	Extendible Hashing: Inserting Entries
	Extendible Hashing: Deleting Entries
	Outline
	Linear Hashing
	How Linear Hashing Works?
	How Linear Hashing Works? (Cont’d)
	Linear Hashing: Searching For Entries
	Linear Hashing: Inserting Entries
	Linear Hashing: Inserting Entries
	Linear Hashing: Inserting Entries
	Linear Hashing: Inserting Entries
	Linear Hashing: Inserting Entries
	Linear Hashing: Inserting Entries
	Linear Hashing: Inserting Entries
	Linear Hashing: Inserting Entries
	Linear Hashing: Inserting Entries
	Linear Hashing: Deleting Entries
	Next Class

