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Today… 
 Last Session: 
 DBMS Internals- Part III 
 Tree-based indexes: ISAM, B and B+ trees 
 

 Today’s Session: 
 DBMS Internals- Part IV 
 Tree-based (B+ tree- cont’d) and Hash-based indexes 

 
 Announcements: 
 PS2 grades are out 
 PS3 is now posted. It is due on March 03, 2014 
 The midterm exam is on Wednesday Feb 26 (all material  

are included) 
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Continued… 
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B+ Trees With Duplicates 
 Thus far, we only discussed unique indices (no duplicate 

keys- i.e., several data entries with the same key value) 
 

 How can we handle duplicate keys? 
1. Use overflow pages to keep all entries of a given key value 

on a single leaf page (natural for ISAM) 
 

2. Treat duplicates like any other entries 
 Several leaf pages will contain entries of a given key value 
 How to search/delete? 

 
3. Make the rid value part of the search key 
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The  Height of a B+ Tree 
 What are the factors that define the height of a B+ tree? 

 Number of data entries 
 The order of occupancy 

 
 The order of occupancy dictates the fan-out of the tree 

 
 The height of the tree is proportional to logfan-out (# of DEs) 

 
 What is the number of disk I/Os to retrieve a data entry? 

 logfan-out (# of DEs) 
 

 How to minimize the height? 
 Maximize the fan-out 



Towards Maximizing the Fan-Out? 

 What does an index entry contain? 
 A search key 
 A page pointer 

 

 Hence, the size of an index entry depends primarily on the 
size of the search key value!  
 

 What if the search key values are very long? 
 Not many index entries will fit on a page 
 Fan-out will be low 
 The height of the tree will be large 

 



Key Compression: A Way to Maximize 
the Fan-Out 

 How can we reduce the size of search key values? 
 Apply key compression, especially that keys are only 

used to direct traffic to the appropriate leaves 
 

 
 

David Smith Devarakonda 

< David Smith >= David Smith && < Devarakonda 

Da De 

< Da >= Da && < De 

More room 
for additional 
index entries 
in the same 

page! 

Is this fully correct? 



Key Compression: A Way to Maximize 
the Fan-Out (Cont’d) 

 What about the following example? 
 

David Smith Devarakonda 

Dante Wu Darius Rex 

Danial Lee 

Davey Jones 

< David Smith 

Dav De Dan 

> Dav 

To ensure correct semantics, the largest key value in the left sub-tree 
and the smallest key value in the right sub-tree must be examined! 

Dante Wu Darius Rex Davey Jones 

< Dav 
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B+ Tree: Bulk Loading 

 Assume a collection of data records with an existing B+ tree 
index on it 
 How to add a new record to it? 
 Use the B+ tree insert() function 

 

 What if we have a collection of data records for which we 
want to create a B+ tree index? (i.e., we want to bulk load 
the B+ tree) 
 Starting with an empty tree and using the insert() function 

for each data record, one at a time, is expensive! 
 This is because for each entry we would require starting again 

from the root and going down to the appropriate leaf page  
 

 



B+ Tree: Bulk Loading 

 What to do? 
 Initialization:  Sort all data entries, insert pointer to first (leaf) 

page in a new (root) page 
 

 

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

Sorted pages of data entries; not yet in B+ tree 
Root 



B+ Tree: Bulk Loading 

 What to do? 
 Add one entry to the root page for each subsequent page of 

the sorted data entries (i.e., <lowest key value on page, 
pointer to the page>) 
 

 

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

Sorted pages of data entries; not yet in B+ tree 
Root 



B+ Tree: Bulk Loading 

 What to do? 
 Add one entry to the root page for each subsequent page of 

the sorted data entries (i.e., <lowest key value on page, 
pointer to the page>) 
 

 

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

Root 
6 



B+ Tree: Bulk Loading 

 What to do? 
 Add one entry to the root page for each subsequent page of 

the sorted data entries (i.e., <lowest key value on page, 
pointer to the page>) 
 

 

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

Root 
6 10 



B+ Tree: Bulk Loading 

 What to do? 
 Split the root and create a new root page 

 
 

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

Root 
6 10 



B+ Tree: Bulk Loading 

 What to do? 
 Split the root and create a new root page 

 
 

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

Root 

6 12 

10 
‘push up’ the middle key 



B+ Tree: Bulk Loading 

 What to do? 
 Continue by inserting entries into the right-most index page 

just above the leaf page; split when fills up 
 

 

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

Root 

6 12 

10 



B+ Tree: Bulk Loading 

 What to do? 
 Continue by inserting entries into the right-most index page 

just above the leaf page; split when fills up 
 

 

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

Root 

Data entry pages  
not yet in B+ tree 35 23 12 6 

10 20 



B+ Tree: Bulk Loading 

 What to do? 
 Continue by inserting entries into the right-most index page 

just above the leaf page; split when fills up 
 

 

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

6 

Root 

10 

12 23 

20 

35 

38 

not yet in B+ tree 
Data entry pages  



B+ Tree: Bulk Loading 

 What is the cost of bulk loading? 
1. Creating the leaf-level entries 
 Scanning the data entries and writing out all the leaf-level  

entries (i.e., K*) 
 Hence, (R+E) I/Os, where R is the number of pages containing 

data entries and E is the number of pages containing K*entries 
 

2. Sorting leaf-level entries 
 3E I/Os (when discussing sorting, we will see how) 

 
3. Building the index from the sorted leaf-level entries 
 The cost of writing out all index-level pages (will be an exercise 

in the recitation)!  
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Hash-Based Indexing 

 What indexing technique can we use to support range 
searches (e.g., “Find s_name where gpa >= 3.0)? 
 Tree-Based Indexing 

 
 What about equality selections (e.g., “Find s_name 

where sid = 102”? 
 Tree-Based Indexing 
 Hash-Based Indexing (cannot support range searches!) 

 
 Hash-based indexing, however, proves to be very useful 

in implementing relational operators (e.g., joins) 
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Static Hashing 
 A hash structure (or table or file) is a generalization of 

the simpler notion of an ordinary array 
 In an array, an arbitrary position can be examined in O(1) 

 

 A hash function h is used to map keys into a range of 
bucket numbers 

h(key) mod N 

h 
key 

Primary bucket pages Overflow pages 

2 
0 

N-1 

With Static Hashing,  
allocated sequentially  
and never de-allocated 

With Static Hashing,  
allocated (as needed) 
when corresponding  
buckets become full 



Static Hashing 
 Data entries can be any of the three alternatives (A (1), A 

(2) or A (3)- see previous lecture)  
 

 Data entries can be sorted in buckets to speed up searches 
 

 The hash function h is used to identify the bucket to which 
a given key belongs and subsequently insert, delete or 
locate a respective data record 
 A hash function of the form h(key) = (a * key + b) works well 

in practice 
 

 A search ideally requires 1 disk I/O, while an insertion or a 
deletion necessitates 2 disk I/Os 
 
 
 
 



Static Hashing: Some Issues 
 Similar to ISAM, the number of buckets is fixed! 
 Cannot deal with insertions and deletions gracefully 

 
 Long overflow chains can develop easily and degrade 

performance! 
 Pages can be initially kept only 80% full 

 

 Dynamic hashing techniques can be used to fix  
the problem 
 Extendible Hashing (EH) 
 Liner Hashing (LH) 
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Directory of Pointers 
 How else (as opposed to overflow pages) can we add a 

data record to a full bucket in a static hash file? 
 Reorganize the table (e.g., by doubling the number of 

buckets and redistributing the entries across the new  
set of buckets) 

 But, reading and writing all pages is expensive! 
 

 In contrast, we can use a directory of pointers to buckets 
 Buckets number can be doubled by doubling just the 

directory and splitting only the bucket that overflowed 
 The trick lies on how the hash function can be adjusted! 

 

 
 
 

 
 
 



Extendible Hashing 
 Extendible Hashing uses a directory of pointers to buckets 

 
 The result of applying a hash  

function h is treated as a  
binary number and  
the last d bits are  
interpreted as an  
offset into the directory 
 

 d is referred to as the global depth  
of the hash file and is kept as part  
of the header of the file 

 

 
 
 

 
 
 

00 

01 

10 

11 

DIRECTORY 

Bucket A 

Bucket B 

Bucket C 

Bucket D 

DATA PAGES 

10* 

1* 21* 

4* 12* 32* 16* 

15* 7* 19* 

5* 

2 

GLOBAL DEPTH 



Extendible Hashing: Searching for Entries 
 To search for a data entry, apply a hash function h to the 

key and take the last d bits of its binary representation to 
get the bucket number  
 

 Example: search for 5*  
 

 
 
 

 
 
 

00 

01 

10 

11 

DIRECTORY 

Bucket A 

Bucket B 

Bucket C 

Bucket D 

DATA PAGES 

10* 

1* 21* 

4* 12* 32* 16* 

15* 7* 19* 

5* 5 = 101  

2 



Extendible Hashing: Inserting Entries 
 An entry can be inserted as follows: 
 Find the appropriate bucket (as in search) 

 
 Split the bucket if full and redistribute contents 

(including the new entry to be inserted) across 
the old bucket and its “split image” 
 
 Double the directory if necessary 

 
 Insert the given entry 

 
 

 
 

 
 
 



Extendible Hashing: Inserting Entries 
 Find the appropriate bucket (as in search), split the bucket 

if full, double the directory if necessary and insert the 
given entry 
 

 Example: insert 13*  
 

 
 
 

 
 
 

13* 

00 

01 

10 

11 

DIRECTORY 

Bucket A 

Bucket B 

Bucket C 

Bucket D 

10* 

1* 21* 

4* 12* 32* 16* 

15* 7* 19* 

5* 13 = 1101  

2 



Extendible Hashing: Inserting Entries 
 Find the appropriate bucket (as in search), split the bucket 

if full, double the directory if necessary and insert the 
given entry 
 

 Example: insert 20*  
 

 
 
 

 
 
 

13* 

00 

01 

10 

11 

DIRECTORY 

Bucket A 

Bucket B 

Bucket C 

Bucket D 

10* 

1* 21* 

4* 12* 32* 16* 

15* 7* 19* 

5* 20 = 10100 

FULL, hence, split and redistribute! 
2 



Extendible Hashing: Inserting Entries 
 Find the appropriate bucket (as in search), split the bucket 

if full, double the directory if necessary and insert the 
given entry 
 

 Example: insert 20*  
 

 
 
 

 
 
 

13* 
00 

01 

10 

11 

DIRECTORY 

Bucket A 

Bucket B 

Bucket C 

Bucket D 

10* 

1* 21* 

32* 16* 

15* 7* 19* 

5* 

20 = 10100 

20* Bucket A2 
(`split image' 
of Bucket A) 

4* 12* 

2 

Is this enough? 



Extendible Hashing: Inserting Entries 
 Find the appropriate bucket (as in search), split the bucket 

if full, double the directory if necessary and insert the 
given entry 
 

 Example: insert 20*  
 

 
 
 

 
 
 

13* 
00 

01 

10 

11 

DIRECTORY 

Bucket A 

Bucket B 

Bucket C 

Bucket D 

10* 

1* 21* 

32* 16* 

15* 7* 19* 

5* 

20* Bucket A2 
(`split image' 
of Bucket A) 

4* 12* 

2 

Double the directory and 
increase the global depth 

20 = 10100 



Extendible Hashing: Inserting Entries 
 Find the appropriate bucket (as in search), split the bucket 

if full, double the directory if necessary and insert the 
given entry 
 

 Example: insert 20*  
 

 
 
 

 
 
 

19* 

0 00 

001 
010 

011 
1 00 

101 

110 
111 

3 

DIRECTORY 

Bucket A 

Bucket B 

Bucket C 

Bucket D 

Bucket A2 
(`split image' 
of Bucket A) 

32* 

1* 5* 21* 13* 

16* 

10* 

15* 7* 

4* 20* 12* 

GLOBAL DEPTH 

These two bits indicate a data entry that  
belongs to one of these two buckets  

The third bit distinguishes between these  
two buckets! 

But, is it necessary always to 
double the directory? 



Extendible Hashing: Inserting Entries 
 Find the appropriate bucket (as in search), split the bucket 

if full, double the directory if necessary and insert the 
given entry 
 

 Example: insert 9*  
 

 
 
 

 
 
 

9 = 1001 

19* 

000 

001 
010 

011 
100 

101 

110 
111 

3 

DIRECTORY 

Bucket A 

Bucket B 

Bucket C 

Bucket D 

Bucket A2 
(`split image' 
of Bucket A) 

32* 

1* 5* 21* 13* 

16* 

10* 

15* 7* 

4* 20* 12* 

GLOBAL DEPTH 

FULL, hence, split! 



Extendible Hashing: Inserting Entries 
 Find the appropriate bucket (as in search), split the bucket 

if full, double the directory if necessary and insert the 
given entry 
 

 Example: insert 9*  
 

 
 
 

 
 
 

19* 

000 

001 
010 

011 
100 

101 

110 
111 

3 

DIRECTORY 

Bucket A 

Bucket B 

Bucket C 

Bucket D 

Bucket A2 
(`split image‘ of A) 

32* 

1* 

16* 

10* 

15* 7* 

4* 20* 12* 

GLOBAL DEPTH 

Bucket B2 
(`split image‘ of B) 

5* 21* 13* 

9* 

Almost there… 

9 = 1001 



Extendible Hashing: Inserting Entries 
 Find the appropriate bucket (as in search), split the bucket 

if full, double the directory if necessary and insert the 
given entry 
 

 Example: insert 9*  
 

 
 
 

 
 
 

19* 

000 

001 
010 

011 
100 

101 

110 
111 

3 

DIRECTORY 

Bucket A 

Bucket B 

Bucket C 

Bucket D 

Bucket A2 
(`split image‘ of A) 

32* 

1* 

16* 

10* 

15* 7* 

4* 20* 12* 

GLOBAL DEPTH 

Bucket A2 
(`split image‘ of A) 

5* 21* 13* 

9* 

There was no need to 
double the directory! 

When NOT to double the 
directory? 

9 = 1001 



Extendible Hashing: Inserting Entries 
 Find the appropriate bucket (as in search), split the bucket 

if full, double the directory if necessary and insert the 
given entry 
 

 Example: insert 9*  
 

 
 
 

 
 
 

19* 

000 

001 
010 

011 
100 

101 

110 
111 

3 

DIRECTORY 

Bucket A 

Bucket B 

Bucket C 

Bucket D 

Bucket A2 
(`split image‘ of A) 

32* 

1* 

16* 

10* 

15* 7* 

4* 20* 12* 

GLOBAL DEPTH 

Bucket A2 
(`split image‘ of A) 

5* 21* 13* 

9* 

If a bucket whose local depth 
equals to the global depth is 
split, the directory must be 

doubled 

3 

2 

2 

3 

3 

LOCAL DEPTH 

3 

9 = 1001 



Extendible Hashing: Inserting Entries 
 Example: insert 9*  

 

 
 
 

 
 
 

9 = 1001 

19* 

000 

001 
010 

011 
100 

101 

110 
111 

3 

DIRECTORY 

Bucket A 

Bucket B 

Bucket C 

Bucket D 

Bucket A2 
(`split image' 
of Bucket A) 

32* 

1* 5* 21* 13* 

16* 

10* 

15* 7* 

4* 20* 12* 

GLOBAL DEPTH 

FULL, hence, split! 
2 

2 

2 

3 

3 

Repeat… 

Because the local depth 
(i.e., 2) is less than the 

global depth (i.e., 3), NO 
need to double the 

directory 

LOCAL DEPTH 



Extendible Hashing: Inserting Entries 
 Example: insert 9*  

 

 
 
 

 
 
 19* 

000 

001 
010 

011 
100 

101 

110 
111 

3 

DIRECTORY 

Bucket A 

Bucket B 

Bucket C 

Bucket D 

Bucket A2 
(`split image‘ of A) 

32* 

1* 

16* 

10* 

15* 7* 

4* 20* 12* 

GLOBAL DEPTH 

Bucket A2 
(`split image‘ of A) 

5* 21* 13* 

9* 

2 

2 

2 

3 

3 

LOCAL DEPTH 

3 

9 = 1001 

Repeat… 



Extendible Hashing: Inserting Entries 
 Example: insert 9*  

 

 
 
 

 
 
 19* 

000 

001 
010 

011 
100 

101 

110 
111 

3 

DIRECTORY 

Bucket A 

Bucket B 

Bucket C 

Bucket D 

Bucket A2 
(`split image‘ of A) 

32* 

1* 

16* 

10* 

15* 7* 

4* 20* 12* 

GLOBAL DEPTH 

Bucket A2 
(`split image‘ of A) 

5* 21* 13* 

9* 

2 

2 

2 

3 

3 

LOCAL DEPTH 

3 

FINAL STATE! 

9 = 1001 

Repeat… 



Extendible Hashing: Inserting Entries 
 Example: insert 20*  

 

 
 
 

 
 
 Because the local depth 

and the global depth are 
both 2, we should double 

the directory! 

20 = 10100 

13* 00 

01 

10 

11 

2 

2 

2 

2 

2 

LOCAL DEPTH 

GLOBAL DEPTH 

DIRECTORY 

Bucket A 

Bucket B 

Bucket C 

Bucket D 

DATA PAGES 

10* 

1* 21* 

4* 12* 32* 16* 

15* 7* 19* 

5* 

FULL, hence, split! Repeat… 



Extendible Hashing: Inserting Entries 
 Example: insert 20*  

 

 
 
 

 
 
 

Is this enough? 

20* 

00 
01 
10 
11 

2 2 

2 

2 

LOCAL DEPTH 2 

2 

DIRECTORY 

GLOBAL DEPTH 
Bucket A 

Bucket B 

Bucket C 

Bucket D 

Bucket A2 
(`split image' 
of Bucket A) 

1* 5* 21* 13* 

32* 16* 

10* 

15* 7* 19* 

4* 12* 

Repeat… 

20 = 10100 



Extendible Hashing: Inserting Entries 
 Example: insert 20*  

 
 

 
 
 

 
 
 

19* 

2 

2 

2 

000 

001 
010 

011 
100 

101 

110 
111 

3 

2 

2 
DIRECTORY 

Bucket A 

Bucket B 

Bucket C 

Bucket D 

Bucket A2 
(`split image' 
of Bucket A) 

32* 

1* 5* 21* 13* 

16* 

10* 

15* 7* 

4* 20* 12* 

LOCAL DEPTH 

GLOBAL DEPTH 
Repeat… 

Is this enough? 



Extendible Hashing: Inserting Entries 
 Example: insert 20*  

 
 

 
 
 

 
 
 

19* 

2 

2 

2 

000 

001 
010 

011 
100 

101 

110 
111 

3 

3 

3 
DIRECTORY 

Bucket A 

Bucket B 

Bucket C 

Bucket D 

Bucket A2 
(`split image' 
of Bucket A) 

32* 

1* 5* 21* 13* 

16* 

10* 

15* 7* 

4* 20* 12* 

LOCAL DEPTH 

GLOBAL DEPTH 
Repeat… 

FINAL STATE! 



Extendible Hashing: Deleting Entries 
 For a deletion, the data entry is located and removed 

 
 If the deletion leaves the bucket empty, it can be merged 

with its split image 
 Merging buckets decreases the local depth 

 
 If each directory element points to the same bucket as its 

split image, the directory can be halved and the global 
depth decremented  
 

 The insertion examples can be worked out backwards as 
examples of deletions! 
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Linear Hashing 
 Another way of adapting gracefully to insertions and 

deletions (i.e., pursuing dynamic hashing) is to use 
Linear Hashing (LH) 
 

 In contrast to Extendible Hashing, LH 
 Does not require a directory 
 Deals naturally with collisions 
 Offers a lot of flexibility w.r.t the timing of bucket split 

(allowing trading off greater overflow chains for higher 
average space utilization) 
 

 
 
 

 
 
 



How Linear Hashing Works? 
 LH uses a family of hash functions h0, h1, h2, ... 
 hi(key) = h(key) mod(2iN);  N = initial # buckets 

 
 h is some hash function (range is not 0 to N-1) 

 
 If N = 2d0, for some d0, hi consists of applying h and 

looking at the last di bits, where di = d0 + I 
 

 hi+1 doubles the range of hi (similar to directory 
doubling) 
 

 
 
 

 
 
 



How Linear Hashing Works? (Cont’d) 
 LH uses overflow pages, and chooses buckets to split in 

a round-robin fashion 
 

 Splitting proceeds in “rounds”   
 A round ends when all NR  

(for round R) initial  
buckets are split 

 Buckets 0 to Next-1  
have been split;   
Next to NR yet to be split 

 Current round number  
is referred to as Level 

 

 
 
 

 
 
 

Level h  

Buckets that existed at the 
beginning of this round:  

this is the range of 

Next 

Buckets split  
in this round 

‘split image’  
Buckets created  
in this round 



Linear Hashing: Searching For Entries 
 To find bucket for data entry r, find hLevel(r): 
 If hLevel(r) in range `Next to NR’ , r belongs there 
 Else, r could belong to bucket hLevel(r) or bucket  

hLevel(r) + NR; must apply hLevel+1(r) to find out 
 

 Example: search for 5* 
 

 
 
 

 
 
 

0 
h h 

1 

00 

01 

10 

11 

000 

001 

010 

011 

Next=0 
PRIMARY 

PAGES 

Data entry r 
with h(r)=5 

Primary  
bucket page 

44* 36* 32* 

25* 9* 5* 

14* 18* 10* 30* 

31* 35* 11* 7* 

Level=0, N=4 

Level = 0  h0 

5* = 101  01 



Linear Hashing: Inserting Entries 
 Find bucket as in search 

 If the bucket to insert the data entry into is full: 
 Add an overflow page and insert data entry 
 (Maybe) Split Next bucket and increment Next 

 
 Some points to Keep in mind: 
 Unlike Extendible Hashing, when an insert triggers a split, the 

bucket into which the data entry is inserted is not necessarily 
the bucket that is split 

 
 As in Static Hashing, an overflow page is added to store the 

newly inserted data entry  
 

 However, since the bucket to split is chosen in a round-robin 
fashion, eventually all buckets will be split  

 
 

 

 
 
 

 
 
 



Linear Hashing: Inserting Entries 
 Example: insert 43* 

 
 

 

 
 
 

 
 
 

0 
h h 

1 

Level=0, N=4 

00 

01 

10 

11 

000 

001 

010 

011 

Next=0 
PRIMARY 

PAGES 

44* 36* 32* 

25* 9* 5* 

14* 18* 10* 30* 

31* 35* 11* 7* 

Level = 0  h0 

43* = 101011  11 

Add an overflow page and 
insert data entry 



Linear Hashing: Inserting Entries 
 Example: insert 43* 

 
 

 
 
 

 
 
 

0 
h h 

1 

Level=0, N=4 

00 

01 

10 

11 

000 

001 

010 

011 

Next=0 
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Linear Hashing: Inserting Entries 
 Example: insert 43* 
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Linear Hashing: Inserting Entries 
 Example: insert 43* 
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Linear Hashing: Inserting Entries 
 Another Example: insert 50* 
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Linear Hashing: Inserting Entries 
 Another Example: insert 50* 
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Linear Hashing: Inserting Entries 
 Another Example: insert 50* 
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Linear Hashing: Inserting Entries 
 Another Example: insert 50* 
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Linear Hashing: Deleting Entries 

 Deletion is essentially the inverse of insertion 
 

 If the last bucket in the file is empty, it can be removed and 
Next can be decremented 
 

 If Next is zero and the last bucket becomes empty  
 Next is made to point to bucket M/2 -1 (where M is the current 

number of buckets) 
 Level is decremented 
 The empty bucket is removed 

 

 The insertion examples can be worked out backwards as 
examples of deletions! 
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