
Database Applications (15-415)

DBMS Internals- Part III
Lecture 11, February 19, 2014

Mohammad Hammoud

Today…
 Last Session:

 DBMS Internals- Part II
 Brief summaries of disks, disk space management, and

buffer management
 Files and Access Methods (file organizations and motivation

for indexing)

 Today’s Session:
 DBMS Internals- Part III

 Tree-based indexes: ISAM, B and B+ (if time allows) trees

 Announcements:

 PS3 is now posted. It is due on March 02, 2014
 The midterm exam is on Wednesday Feb 26 (all material

are included)

DBMS Layers

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Outline

Why Indexing?

Indexed Static Access Method

Why Dynamic Trees?

B Trees

Clustered vs. Un-clustered Indexes

B+ Trees

Motivation

 Consider a file of student records sorted by GPA

 How can we answer a range selection (E.g., “Find all

students with a GPA higher than 3.0”)?

 What about doing a binary search followed by a scan?

 Yes, but…

 What if the file becomes “very” large?

 Cost is proportional to the number of pages fetched

 Hence, may become very slow!

Page 1 Page 2 Page N Page 3 Data File

Motivation

 What about creating an index file (with one entry per
page) and do binary search there?

 But, what if the index file becomes also “very” large?

Page 1 Page 2 Page N … Data File

Index File P 0 K 1 P 1 K 2 P 2 K N P N

Index Entry = <first key on the page, pointer to the page>

Motivation

 Repeat recursively!

Non-leaf

Pages

Pages

Leaf

Each tree page is a disk block and all data records reside (if chosen to be
part of the index) in ONLY leaf pages

How else data records can be stored?

Where to Store Data Records?

 In general, 3 alternatives for “data records” (each
referred to as k*) can be pursued:

 Alternative (1): K* is an actual data record with key k

 Alternative (2): K* is a <k, rid> pair, where rid is the
record id of a data record with search key k

 Alternative (3): K* is a <k, rid-list> pair, where rid-list
is a list of rids of data records with search key k

Where to Store Data Records?

 In general, 3 alternatives for “data records” (each
referred to as k*) can be pursued:

 Alternative (1): K* is an actual data record with key k

 Alternative (2): K* is a <k, rid> pair, where rid is the
record id of a data record with search key k

 Alternative (3): K* is a <k, rid-list> pair, where rid-list
is a list of rids of data records with search key k

A (1): Leaf pages contain the actual data (i.e., the data records)

A (2): Leaf pages contain the <key, rid> pairs and actual data records
are stored in a separate file

A (3): Leaf pages contain the <key, rid-list> pairs and actual data
records are stored in a separate file

The choice among these alternatives is orthogonal to the indexing technique.

Outline

Why Indexing?

Indexed Static Access Method

Why Dynamic Trees?

B Trees

Clustered vs. Un-clustered Indexes

B+ Trees

ISAM Trees: Page Overflows

 Now, what if there are a lot of insertions?

Non-leaf

Pages

Pages

Leaf

Overflow
page

Primary pages

This structure is referred to as Indexed Sequential Access Method (ISAM)

ISAM File Creation

 How to create an ISAM file?

 All leaf pages are allocated sequentially and
sorted on the search key value

 If Alternative (2) or (3) is used, the data records
are created and sorted before allocating
leaf pages

 The non-leaf pages are subsequently allocated

An Example of ISAM Trees

2 Entries Per Page.

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

ISAM: Searching for Entries

 Search begins at root, and key comparisons direct it
to a leaf

 Search for 27*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

ISAM: Inserting Entries

 The appropriate page is determined as for a search, and the
entry is inserted (with overflow pages added if necessary)

 Insert 23*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23*

ISAM: Inserting Entries

 The appropriate page is determined as for a search, and the
entry is inserted (with overflow pages added if necessary)

 Insert 48*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48*

ISAM: Inserting Entries

 The appropriate page is determined as for a search, and the
entry is inserted (with overflow pages added if necessary)

 Insert 41*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

ISAM: Inserting Entries

 The appropriate page is determined as for a search, and the
entry is inserted (with overflow pages added if necessary)

 Insert 42*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42* Chains of overflow pages can easily develop!

ISAM: Deleting Entries

 The appropriate page is determined as for a search, and the
entry is deleted (with ONLY overflow pages removed when
becoming empty)

 Delete 42*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

ISAM: Deleting Entries

 The appropriate page is determined as for a search, and the
entry is deleted (with ONLY overflow pages removed when
becoming empty)

 Delete 42*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

ISAM: Deleting Entries

 The appropriate page is determined as for a search, and the
entry is deleted (with ONLY overflow pages removed when
becoming empty)

 Delete 42*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

ISAM: Deleting Entries

 The appropriate page is determined as for a search, and the
entry is deleted (with ONLY overflow pages removed when
becoming empty)

 Delete 51*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

Note that 51 still appears in an index entry, but not in the leaf!

ISAM: Deleting Entries

 The appropriate page is determined as for a search, and the
entry is deleted (with ONLY overflow pages removed when
becoming empty)

 Delete 55*

10* 15* 20* 27* 33* 37* 40* 46* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

Primary pages are NOT removed, even if they become empty!

ISAM: Some Issues

 Once an ISAM file is created, insertions and deletions affect only
the contents of leaf pages (i.e., ISAM is a static structure!)

 Since index-level pages are never modified, there is no need to
lock them during insertions/deletions
 Critical for concurrency!

 Long overflow chains can develop easily
 The tree can be initially set so that ~20% of each page is free

 If the data distribution and size are relatively static, ISAM might
be a good choice to pursue!

Outline

Why Indexing?

Indexed Static Access Method

Why Dynamic Trees?

B Trees

Clustered vs. Un-clustered Indexes

B+ Trees

Dynamic Trees

 ISAM indices are static

 Long overflow chains can develop as the file grows, leading to
poor performance

 This calls for more flexible, dynamic indices that adjust
gracefully to insertions and deletions

 No need to allocate the leaf pages sequentially as in ISAM

 Among the most successful dynamic index schemes
are B and B+ trees

B and B+ Trees

 B and B+ trees are designed to work on disks
 A B/B+ tree node is usually as large as a whole disk page

 B/B+ trees copy selected pages from disk into main
memory as needed

 Only a constant number of pages exit in memory at any
time; hence, the size of the memory does not limit the size
of a B/B+ tree that can be handled

 O(log (N)) for any operation, assuming N-key B/B+ tree!

Outline

Why Indexing?

Indexed Static Access Method

Why Dynamic Trees?

B Trees

Clustered vs. Un-clustered Indexes

B+ Trees

B Tree Properties

 Each node in a B tree of order d (this is a measure

of the capacity of a tree):
 Has at most 2d keys

 Has at least d keys (except the root, which may
have just 1 key)

 All leaves are on the same level

 Has exactly n-1 keys if the number of pointers is n

k1 k2

… kn

p1
pn+1 Points to a sub-tree

in which all keys are
less than k1

Points to a sub-tree
in which all keys are
greater than kn

Points to a sub-tree in which all keys are greater
than k1 and less than to k2

B Tree Properties

 Each node in a B tree of order d (this is a measure

of the capacity of a tree):
 Has at most 2d keys

 Has at least d keys (except the root, which may
have just 1 key)

 All leaves are on the same level

 Has exactly n-1 keys if the number of pointers is n

k1 k2

… kn

p1
pn+1 Points to a sub-tree

in which all keys are
less than k1

Points to a sub-tree
in which all keys are
greater than kn

Points to a sub-tree in which all keys are greater
than k1 and less than to k2

A variant of a B tree, known as B* tree, requires each internal node
to be at least 2/3 full, rather than half full, as a B tree requires.

A B Tree Example

 Below is a B Tree example with order d = 1

1 3

6

7

9

13

<6

>6 <9
>9

B trees are balanced search trees (they generalize binary trees)

B Tree: Queries

 Algorithm for exact match query? (E.g., ssn=8?)

1 3

6

7

9

13

<6

>6 <9
>9

B Tree: Queries

 Algorithm for exact match query? (E.g., ssn=8?)

1 3

6

7

9

13

<6

>6 <9
>9

B Tree: Queries

 Algorithm for exact match query? (E.g., ssn=8?)

1 3

6

7

9

13

<6

>6 <9
>9

B Tree: Queries

 Algorithm for exact match query? (E.g., ssn=8?)

1 3

6

7

9

13

<6

>6 <9
>9

B Tree: Queries

 Algorithm for exact match query? (E.g., ssn=8?)

1 3

6

7

9

13

<6

>6 <9
>9

H steps (= disk

accesses)

B Tree: Queries

 What about range queries (E.g., 5<salary<8)

1 3

6

7

9

13

<6

>6 <9
>9

B Tree: Queries

 What about range queries (E.g., 5<salary<8)

1 3

6

7

9

13

<6

>6 <9
>9

B Tree: Insertions

 Search begins at root, and key comparisons
direct it to a leaf (as in ISAM)

 Insert the given entry in the located leaf

 If an overflow occurs, split the node and push up
the middle key (recursively)

How do we define an overflow in a B tree?

B Tree: Examples of Insertions

 Easy case: insert ‘8’

1 3

6

7

9

13

<6

>6 <9
>9

B Tree: Examples of Insertions

 Easy case: insert ‘8’

1 3

6

7

9

13

<6

>6 <9
>9

8

B Tree: Examples of Insertions

 Hard case: insert ‘2’

1 3

6

7

9

13

<6

>6 <9
>9

2

B Tree: Examples of Insertions

 Hard case: insert ‘2’

1 2

6

7

9

13 3

Push up the middle key and split

B-Tree: Examples of Insertions

 Hard case: insert ‘2’

6

7

9

13 1 3

2 2
Again, push up the

middle key and split

B Tree: Examples of Insertions

 Hard case: insert ‘2’

7

9

13 1 3

2

6 FINAL TREE!

Automatic, incremental re-organization (contrast with ISAM!)

Pseudo-code: B Tree Insertions

INSERTION OF KEY ’K’

 find the correct leaf node ’L’;

 if (’L’ overflows){

 split ’L’, and push middle key to parent node ’P’;

 if (’P’ overflows){

 repeat the split recursively; }

 else{

 add the key ’K’ in node ’L’;

 /* maintaining the key order in ’L’ */ }

B Tree: Deletions

 Delete begins at root, and key comparisons
direct it to a leaf (as in ISAM)

 Delete entry (if found) in the located leaf

 If an underflow occurs, merge nodes

How do we define an underflow in a B tree?

B Tree: Deletions

 Four cases:

 Case1: delete a key at a leaf – no underflow

 Case2: delete non-leaf key – no underflow

 Case3: delete leaf-key; underflow, and ‘rich sibling’

 Case4: delete leaf-key; underflow, and ‘poor sibling’

B Tree: Deletions

 Four cases:

 Case1: delete a key at a leaf – no underflow

 Case2: delete non-leaf key – no underflow

 Case3: delete leaf-key; underflow, and ‘rich sibling’

 Case4: delete leaf-key; underflow, and ‘poor sibling’

Examples of Deletions: Case 1

 Easy case: delete ‘3’

1 3

6

7

9

13

<6

>6 <9
>9

Examples of Deletions: Case 1

 Easy case: delete ‘3’

1

6

7

9

13

<6

>6 <9
>9

B-Tree: Deletions

 Four cases:

 Case1: delete a key at a leaf – no underflow

 Case2: delete non-leaf key – no underflow

 Case3: delete leaf-key; underflow, and ‘rich sibling’

 Case4: delete leaf-key; underflow, and ‘poor sibling’

Examples of Deletions: Case 2

 Delete ‘6’

Delete and
Promote!

1 3

6

7

9

13

<6

>6 <9
>9

Examples of Deletions: Case 2

 Delete ‘6’

1 3 7

9

13

<6

>6 <9
>9

Delete

We still need to promote!

How to promote?
Pick the largest key from the left sub-tree (or the smallest from the right sub-tree).

Examples of Deletions: Case 2

 Delete ‘6’

1 7

9

13

<6

>6 <9
>9

3
Promote

Examples of Deletions: Case 2

 Delete ‘6’

1 7

9

13

<3

>3 <9
>9

3

FINAL TREE!

B Tree: Deletions

 Four cases:

 Case1: delete a key at a leaf – no underflow

 Case2: delete non-leaf key – no underflow

 Case3: delete leaf-key; underflow, and ‘rich sibling’

 Case4: delete leaf-key; underflow, and ‘poor sibling’

Examples of Deletions: Case 3

 Delete ‘7’

Delete and
Borrow!

1 3

6

7

9

13

<6

>6 <9
>9

Examples of Deletions: Case 3

 Delete ‘7’

Delete

1 3

6 9

13

<6

>6 <9
>9

Examples of Deletions: Case 3

 Delete ‘7’

Borrow

1 3

6 9

13

<6

>6 <9
>9 Rich sibling

‘Rich’ = can lend a key, without under-flowing

‘Borrow’ = can happen ONLY through the parent

Examples of Deletions: Case 3

 Delete ‘7’

Borrow

1 3

6 9

13

<6

>6 <9
>9 Rich sibling

NO!!

Examples of Deletions: Case 3

 Delete ‘7’

Borrow

1 3

6 9

13

<6

>6 <9
>9

Examples of Deletions: Case 3

 Delete ‘7’

Borrow

1

3 9

13

<6

>6 <9
>9

6

Examples of Deletions: Case 3

 Delete ‘7’

Delete and
borrow
through

the parent

1

3 9

13

<3

>3 <9
>9

6

FINAL TREE!

B Tree: Deletions

 Four cases:

 Case1: delete a key at a leaf – no underflow

 Case2: delete non-leaf key – no underflow

 Case3: delete leaf-key; underflow, and ‘rich sibling’

 Case4: delete leaf-key; underflow, and ‘poor sibling’

Examples of Deletions: Case 4

 Delete ‘13’

Delete and
Merge!

1 3

6

7

9

13

<6

>6 <9
>9

Examples of Deletions: Case 4

 Delete ‘13’

Delete

1 3

6

7

9 <6

>6 <9
>9

Examples of Deletions: Case 4

 Delete ‘13’

1 3

6

7

9 <6

>6 <9
>9

‘Poor’ = can host a key, without overflowing

Merge with
‘poor

sibling’

Examples of Deletions: Case 4

 Delete ‘13’

1 3

6

7

9 <6

>6 <9
>9

Merge with
‘poor

sibling’

Poor sibling

Examples of Deletions: Case 4

 Delete ‘13’

1 3

6

7

9 <6

>6 <9
>9

Merge, by pulling a key from the parent (the opposite of insertions!)

Merge with
‘poor

sibling’

Examples of Deletions: Case 4

 Delete ‘13’

Merge &
Pull from

Parent

1 3

6

7

<6

>6

9

Examples of Deletions: Case 4

 Delete ‘13’

Merge with
‘poor

sibling’

1 3

6

7

<6

>6

9

FINAL TREE!

But, what if the parent underflows?
 Repeat recursively!

Pseudo-code: B Tree Deletions

DELETION OF KEY ’K’

 locate key ’K’, in node ’N’

 if(’N’ is a non-leaf node) {

 delete ’K’ from ’N’;

 find the immediately largest key ’K1’;

 /* which is guaranteed to be on a leaf node ’L’ */

 copy ’K1’ in the old position of ’K’;

 invoke this DELETION routine on ’K1’ from the leaf node

’L’;

 else {

/* ’N’ is a leaf node */

... (next slide..)

Pseudo-code: B Tree Deletions

/* ’N’ is a leaf node */

 if(’N’ underflows){

 let ’N1’ be the sibling of ’N’;

 if(’N1’ is "rich"){ /* ie., N1 can lend us a key */

 borrow a key from ’N1’ THROUGH the parent node;

 }else{ /* N1 is 1 key away from underflowing */

 MERGE: pull the key from the parent ’P’,

 and merge it with the keys of ’N’ and ’N1’ into a

new node;

 if(’P’ underflows){ repeat recursively }

 }

 }

Outline

Why Indexing?

Indexed Static Access Method

Why Dynamic Trees?

B Trees

Clustered vs. Un-clustered Indexes

B+ Trees

Clustered vs. Un-clustered Indexes

 Indexes can be either clustered or un-clustered

 Clustered Indexes:
 When the ordering of data records is the same as

(or close to) the ordering of entries in some index

 Un-clustered Indexes:
 When the ordering of data records differs from the

ordering of entries in some index

Clustered vs. Un-clustered Indexes

 Is an index that uses Alternative (1) clustered or
un-clustered?
 Clustered

 Is an index that uses Alternatives (2) or (3)
clustered or un-clustered?
 Clustered if data records are sorted on the search

key field

 In practice:
 A clustered index is an index that uses Alternative (1)
 Indexes that use Alternatives (2) or (3) are un-clustered

Outline

Why Indexing?

Indexed Static Access Method

Why Dynamic Trees?

B Trees

Clustered vs. Un-clustered Indexes

B+ Trees

B+ Trees: Motivation

 For clustering indexes, data records are scattered

1 3

6

7

9

13

<6

>6 <9
>9

IDEA 1: replicate keys from non-leaf nodes, to make sure every key
appears at only one leaf node!

B+ Trees: Motivation

 How can we facilitate sequential operations?

1 3

6

7

9

13

<6

>6 <9
>9

IDEA 2: String all leaf nodes together!

B+ Trees: Motivation

 Towards B+ trees

 Is this enough?

1 3

6

6

9

9

<6

>=6 <9
>=9

7 13

B+ Trees: Motivation

 B+ trees

1 3

6

6

9

9

<6

>=6 <9
>=9

7 13

Vital for clustering indexes!

B+ Tree: Searching for Entries

 Search begins at root, and key comparisons direct it
to a leaf (as in ISAM)

 Example 1: Search for entry 5*
Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

B+ Tree: Searching for Entries

 Search begins at root, and key comparisons direct it
to a leaf (as in ISAM)

 Example 2: Search for entry 15*

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

15* is not found!

B+ Trees: Inserting Entries

 Find correct leaf L

 Put data entry onto L

 If L has enough space, done!

 Else, must split L into L and a new node L2

 Redistribute entries evenly, copying up the middle key

 Parent node may overflow

 Push up middle key (splits “grow” trees; a root split
increases the height of the tree)

B+ Tree: Examples of Insertions

 Insert entry 8*

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Leaf is full; hence, split!

B+ Tree: Examples of Insertions

 Insert entry 8*

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

2* 3* 5* 7* 8*

5

The middle key (i.e., 5) is “copied up”
and continues to appear in the leaf

B+ Tree: Examples of Insertions

 Insert entry 8*

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

2* 3* 5* 7* 8*

5 17 24 30 13 5

Parent is full; hence, split!

> 2d keys and 2d + 1 pointers

B+ Tree: Examples of Insertions

 Insert entry 8*

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

2* 3* 5* 7* 8*

5

5 24 30

17

13

The middle key (i.e., 17)

is “pushed up”

B+ Tree: Examples of Insertions

 Insert entry 8*

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

2* 3* 5* 7* 8*

5 24 30

17

13

B+ Tree: Examples of Insertions

 Insert entry 8*

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13 5

7* 5* 8*

Splitting the root lead to an increase of height by 1!

What about re-distributing entries instead of splitting nodes?

FINAL TREE!

B+ Tree: Examples of Insertions

 Insert entry 8*

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Leaf is full; hence, check the sibling ‘Poor Sibling’

B+ Tree: Examples of Insertions

 Insert entry 8*

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13
Do it through the parent

B+ Tree: Examples of Insertions

 Insert entry 8*

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

Do it through the parent

8*

“Copy up” the new low key value!

13 8

But, when to redistribute and when to split?

Splitting vs. Redistributing

 Leaf Nodes

 Previous and next-neighbor pointers must be updated
upon insertions (if splitting is to be pursued)

 Hence, checking whether redistribution is possible does
not increase I/O

 Therefore, if a sibling can spare an entry, re-distribute

 Non-Leaf Nodes

 Checking whether redistribution is possible usually
increases I/O

 Splitting non-leaf nodes typically pays off!

B+ Insertions: Keep in Mind

 Every data entry must appear in a leaf node;
hence, “copy up” the middle key upon splitting

 When splitting index entries, simply “push up” the
middle key

 Apply splitting and/or redistribution on leaf nodes

 Apply only splitting on non-leaf nodes

B+ Trees: Deleting Entries

 Start at root, find leaf L where entry belongs

 Remove the entry

 If L is at least half-full, done!

 If L underflows

Try to re-distribute (i.e., borrow from a “rich
sibling” and “copy up” its lowest key)

 If re-distribution fails, merge L and a “poor
sibling”

Update parent

And possibly merge, recursively

B+ Tree: Examples of Deletions

 Delete 19*

2* 3*

Root
17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13 5

7* 5* 8*

Removing 19* does not entail an underflow

B+ Tree: Examples of Deletions

 Delete 19*

2* 3*

Root
17

24 30

14* 16* 24* 27* 29* 33* 34* 38* 39*

13 5

7* 5* 8* 20* 22*

FINAL TREE!

B+ Tree: Examples of Deletions

 Delete 20*

2* 3*

Root
17

24 30

14* 16* 24* 27* 29* 33* 34* 38* 39*

13 5

7* 5* 8*

Deleting 20* entails an underflow; hence, check a sibling for redistribution

20* 22*

B+ Tree: Examples of Deletions

 Delete 20*

2* 3*

Root
17

24 30

14* 16* 24* 27* 29* 33* 34* 38* 39*

13 5

7* 5* 8*

The sibling is ‘rich’ (i.e., can lend an entry); hence, remove 20* and redistribute!

20* 22*

B+ Tree: Examples of Deletions

 Delete 20*

2* 3*

Root
17

24 30

14* 16* 24* 27* 29* 33* 34* 38* 39*

13 5

7* 5* 8* 22*

“Copy up” 27*, the lowest value in the leaf from which we borrowed 24*

B+ Tree: Examples of Deletions

 Delete 20*

2* 3*

Root
17

30

14* 16* 24* 27* 29* 33* 34* 38* 39*

13 5

7* 5* 8*

“Copy up” 27*, the lowest value in the leaf from which we borrowed 24*

22*

27

B+ Tree: Examples of Deletions

 Delete 20*

2* 3*

Root
17

30

14* 16* 24* 27* 29* 33* 34* 38* 39*

13 5

7* 5* 8* 22*

27

FINAL TREE!

B+ Tree: Examples of Deletions

 Delete 24*

2* 3*

Root
17

30

14* 16* 24* 27* 29* 33* 34* 38* 39*

13 5

7* 5* 8*

The affected leaf will contain only 1 entry and the sibling cannot lend
any entry (i.e., redistribution is not applicable); hence, merge!

22*

27

B+ Tree: Examples of Deletions

 Delete 24*

2* 3*

Root
17

30

14* 16* 24* 27* 29* 33* 34* 38* 39*

13 5

7* 5* 8* 22*

27

30

22* 27* 29* 33* 34* 38* 39*

Merge

“Toss” 27 because the page that it was
pointing to does not exist anymore!

B+ Tree: Examples of Deletions

 Delete 24*

2* 3*

Root
17

14* 16*

13 5

7* 5* 8*

30

22* 27* 29* 33* 34* 38* 39*

Almost there…

B+ Tree: Examples of Deletions

 Delete 24*

2* 3*

Root
17

14* 16*

13 5

7* 5* 8*

30

22* 27* 29* 33* 34* 38* 39*

But, this entails an underflow; hence,
we must either redistribute or merge!

B+ Tree: Examples of Deletions

 Delete 24*

2* 3*

Root
17

14* 16*

13 5

7* 5* 8*

30

22* 27* 29* 33* 34* 38* 39*

The sibling is “poor” (i.e., redistribution
is not applicable); hence, merge!

B+ Tree: Examples of Deletions

 Delete 24*

2* 3*

Root
17

14* 16*

13 5

7* 5* 8*

30

22* 27* 29* 33* 34* 38* 39*

Root

13 5

Lacks a pointer for 30!

30

B+ Tree: Examples of Deletions

 Delete 24*

2* 3*

Root
17

14* 16*

13 5

7* 5* 8*

30

22* 27* 29* 33* 34* 38* 39*

Root

13 5

Lacks a key value to create a complete index entry!

30

B+ Tree: Examples of Deletions

 Delete 24*

2* 3*

Root
17

14* 16*

13 5

7* 5* 8*

30

22* 27* 29* 33* 34* 38* 39*

Root

13 5

“Pull down” 17!
30 17

B+ Tree: Examples of Deletions

 Delete 24*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39* 5* 8*

Root

30 13 5 17

FINAL TREE!

B+ Tree: Examples of Deletions

 Delete 24*
Root

13 5 17 20

22

30

14* 16* 17* 18* 20* 33* 34* 38* 39* 22* 27* 29* 21* 7* 5* 8* 3* 2*

Assume (instead) the above tree during deleting 24*

Now we can re-distribute (instead of merging) keys!

24* was originally here

B+ Tree: Examples of Deletions

 Delete 24*

14* 16* 33* 34* 38* 39* 22* 27* 29* 17* 18* 20* 21* 7* 5* 8* 2* 3*

Root

13 5

17

30 20 22

DONE! It suffices to re-distribute only 20; 17 was redistributed for illustration.

Next Class

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Continue (Hash-Based Indexing)

