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Today… 
 Last Session: 

 DBMS Internals- Part II 
 Brief summaries of disks, disk space management, and 

buffer management 
 Files and Access Methods (file organizations and motivation 

for indexing) 
 

 Today’s Session: 
 DBMS Internals- Part III 

 Tree-based indexes: ISAM, B and B+ (if time allows) trees 

 
 Announcements: 

 PS3 is now posted. It is due on March 02, 2014 
 The midterm exam is on Wednesday Feb 26 (all material  

are included) 
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Motivation 

 Consider a file of student records sorted by GPA 

 

 

 How can we answer a range selection (E.g., “Find all 

students with a GPA higher than 3.0”)? 

 What about doing a binary search followed by a scan? 

 Yes, but… 
 

 What if the file becomes “very” large? 

 Cost is proportional to the number of pages fetched 

 Hence, may become very slow! 

 

 

 

 

 

 

 

Page 1 Page 2 Page N Page 3 Data File 



Motivation 

 What about creating an index file (with one entry per 
page) and do binary search there? 

 

 

 

 

 

 

 But, what if the index file becomes also “very” large? 

 

 

 

 

 

 

 

Page 1 Page 2 Page N … Data File 

Index File P 0 K 1 P 1 K 2 P 2 K N P N 

Index Entry = <first key on the page, pointer to the page> 



Motivation 

 Repeat recursively! 

 

 

 

 

 

 

 

 

 

 

 

 

 

Non-leaf 

Pages 

Pages 

Leaf 

Each tree page is a disk block and all data records reside (if chosen to be 
part of the index) in ONLY leaf pages 

How else data records can be stored? 



Where to Store Data Records? 

 In general, 3 alternatives for “data records” (each 
referred to as k*) can be pursued: 

 Alternative (1): K* is an actual data record with key k 

 

 Alternative (2): K* is a <k, rid> pair, where rid is the 
record id of a data record with search key k 

 

 Alternative (3): K* is a <k, rid-list> pair, where rid-list  
is a list of rids of data records with search key k 

 

 

 

 

 

 

 

 

 

 

 

 

 



Where to Store Data Records? 

 In general, 3 alternatives for “data records” (each 
referred to as k*) can be pursued: 

 Alternative (1): K* is an actual data record with key k 

 

 Alternative (2): K* is a <k, rid> pair, where rid is the 
record id of a data record with search key k 

 

 Alternative (3): K* is a <k, rid-list> pair, where rid-list  
is a list of rids of data records with search key k 

 

 

 

 

 

 

 

 

 

 

 

 

 

A (1): Leaf pages contain the actual data (i.e., the data records) 

A (2): Leaf pages contain the <key, rid> pairs and actual data records 
are stored in a separate file 

A (3): Leaf pages contain the <key, rid-list> pairs and actual data 
records are stored in a separate file 

The choice among these alternatives is orthogonal to the indexing technique. 
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ISAM Trees: Page Overflows 

 Now, what if there are a lot of insertions? 

 

 

 

 

 

 

 

 

 

 

 

 

 

Non-leaf 

Pages 

Pages 

Leaf 

Overflow  
page 

Primary pages 

This structure is referred to as Indexed Sequential Access Method (ISAM)  



ISAM File Creation 

 How to create an ISAM file? 

 All leaf pages are allocated sequentially and 
sorted on the search key value 

 

 If Alternative (2) or (3) is used, the data records 
are created and sorted before allocating  
leaf pages 

 

 The non-leaf pages are subsequently allocated 



An Example of ISAM Trees 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 Entries Per Page. 

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97* 

20 33 51 63 

40 

Root 



ISAM: Searching for Entries 

 Search begins at root, and key comparisons direct it 
to a leaf 

 

 Search for 27* 

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97* 

20 33 51 63 

40 

Root 



ISAM: Inserting Entries 

 The appropriate page is determined as for a search, and the 
entry is inserted (with overflow pages added if necessary) 

 

 Insert 23* 

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97* 

20 33 51 63 

40 

Root 

23* 



ISAM: Inserting Entries 

 The appropriate page is determined as for a search, and the 
entry is inserted (with overflow pages added if necessary) 

 

 Insert 48* 

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97* 

20 33 51 63 

40 

Root 

23* 48* 



ISAM: Inserting Entries 

 The appropriate page is determined as for a search, and the 
entry is inserted (with overflow pages added if necessary) 

 

 Insert 41* 

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97* 

20 33 51 63 

40 

Root 

23* 48* 41* 



ISAM: Inserting Entries 

 The appropriate page is determined as for a search, and the 
entry is inserted (with overflow pages added if necessary) 

 

 Insert 42* 

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97* 

20 33 51 63 

40 

Root 

23* 48* 41* 

42* Chains of overflow pages can easily develop! 



ISAM: Deleting Entries 

 The appropriate page is determined as for a search, and the 
entry is deleted (with ONLY overflow pages removed when 
becoming empty) 

 

 Delete 42* 

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97* 

20 33 51 63 

40 

Root 

23* 48* 41* 

42* 



ISAM: Deleting Entries 

 The appropriate page is determined as for a search, and the 
entry is deleted (with ONLY overflow pages removed when 
becoming empty) 

 

 Delete 42* 

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97* 

20 33 51 63 

40 

Root 

23* 48* 41* 



ISAM: Deleting Entries 

 The appropriate page is determined as for a search, and the 
entry is deleted (with ONLY overflow pages removed when 
becoming empty) 

 

 Delete 42* 

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97* 

20 33 51 63 

40 

Root 

23* 48* 41* 



ISAM: Deleting Entries 

 The appropriate page is determined as for a search, and the 
entry is deleted (with ONLY overflow pages removed when 
becoming empty) 

 

 Delete 51* 

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97* 

20 33 51 63 

40 

Root 

23* 48* 41* 

Note that 51 still appears in an index entry, but  not in the leaf! 



ISAM: Deleting Entries 

 The appropriate page is determined as for a search, and the 
entry is deleted (with ONLY overflow pages removed when 
becoming empty) 

 

 Delete 55* 

10* 15* 20* 27* 33* 37* 40* 46* 55* 63* 97* 

20 33 51 63 

40 

Root 

23* 48* 41* 

Primary pages are NOT removed, even if they become empty! 



ISAM: Some Issues 

 Once an ISAM file is created, insertions and deletions affect only 
the contents of leaf pages (i.e., ISAM is a static structure!) 

 

 Since index-level pages are never modified, there is no need to 
lock them during insertions/deletions  
 Critical for concurrency! 

 

 Long overflow chains can develop easily 
 The tree can be initially set so that ~20% of each page is free 

 

 If the data distribution and size are relatively static, ISAM might 
be a good choice to pursue! 
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Dynamic Trees 

 ISAM indices are static 

 Long overflow chains can develop as the file grows, leading to 
poor performance 

 

 This calls for more flexible, dynamic indices that adjust 
gracefully to insertions and deletions 

 No need to allocate the leaf pages sequentially as in ISAM 

 

 Among the most successful dynamic index schemes 
are B and B+ trees 

 

 

 



B and B+ Trees 

 B and B+ trees are designed to work on disks 
 A B/B+ tree node is usually as large as a whole disk page 

 

 B/B+ trees copy selected pages from disk into main 
memory as needed 

 

 Only a constant number of pages exit in memory at any 
time; hence, the size of the memory does not limit the size 
of a B/B+ tree that can be handled 

 

  O(log (N)) for any operation, assuming N-key B/B+ tree! 
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B Tree Properties 

 Each node in a B tree of order d (this  is a measure 

of the capacity of a tree): 
 Has at most 2d keys 

 Has at least d keys (except the root, which may 
have just 1 key) 

 All leaves are on the same level 

 Has exactly n-1 keys if the number of pointers is n 

 

 

 
k1 k2 

… kn 

p1 
pn+1 Points to a sub-tree  

in which all keys are  
less than k1 

Points to a sub-tree  
in which all keys are  
greater than kn 

Points to a sub-tree in which all keys are greater 
than k1 and less than to k2 



B Tree Properties 

 Each node in a B tree of order d (this  is a measure 

of the capacity of a tree): 
 Has at most 2d keys 

 Has at least d keys (except the root, which may 
have just 1 key) 

 All leaves are on the same level 

 Has exactly n-1 keys if the number of pointers is n 

 

 

 
k1 k2 

… kn 

p1 
pn+1 Points to a sub-tree  

in which all keys are  
less than k1 

Points to a sub-tree  
in which all keys are  
greater than kn 

Points to a sub-tree in which all keys are greater 
than k1 and less than to k2 

A variant of a B tree, known as B* tree, requires each internal node 
to be at least 2/3 full, rather than half full, as a B tree requires. 



A B Tree Example 

 Below is a B Tree example with order d = 1 

 

 

 

 

 

 

 

 

 

 

 

 

1 3 

6 

7 

9 

13 

<6 

>6 <9 
>9 

B trees are balanced search trees (they generalize binary trees) 



B Tree: Queries 

 Algorithm for exact match query? (E.g., ssn=8?) 
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B Tree: Queries 

 Algorithm for exact match query? (E.g., ssn=8?) 
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B Tree: Queries 

 Algorithm for exact match query? (E.g., ssn=8?) 
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B Tree: Queries 

 Algorithm for exact match query? (E.g., ssn=8?) 
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B Tree: Queries 

 Algorithm for exact match query? (E.g., ssn=8?) 

 

 

 

 

 

 

 

1 3 

6 

7 

9 

13 

<6 

>6 <9 
>9 

H steps (= disk 

accesses) 



B Tree: Queries 

 What about range queries (E.g., 5<salary<8) 
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B Tree: Queries 

 What about range queries (E.g., 5<salary<8) 

 

 

 

 

 

 

 

1 3 

6 

7 

9 

13 

<6 

>6 <9 
>9 



B Tree: Insertions 

 Search begins at root, and key comparisons 
direct it to a leaf (as in ISAM) 

 

 Insert the given entry in the located leaf  

 

 If an overflow occurs, split the node and push up 
the middle key (recursively)  

 

 

 

 

 

 

How do we define an overflow in a B tree? 



B Tree: Examples of Insertions 

 Easy case: insert ‘8’ 
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B Tree: Examples of Insertions 

 Easy case: insert ‘8’ 

 

 

 

 

 

 

 

1 3 

6 

7 

9 

13 

<6 

>6 <9 
>9 

8 



B Tree: Examples of Insertions 

 Hard case: insert ‘2’ 

 

 

 

 

 

 

 

1 3 

6 

7 

9 

13 

<6 

>6 <9 
>9 

2 



B Tree: Examples of Insertions 

 Hard case: insert ‘2’ 

 

 

 

 

 

 

 

1 2 

6 

7 

9 

13 3 

Push up the middle key and split 



B-Tree: Examples of Insertions 

 Hard case: insert ‘2’ 

 

 

 

 

 

 

 

6 

7 

9 

13 1 3 

2 2 
Again, push up the 

middle key and split 



B Tree: Examples of Insertions 

 Hard case: insert ‘2’ 

 

 

 

 

 

 

 
7 

9 

13 1 3 

2 

6 FINAL TREE! 

Automatic, incremental re-organization (contrast with ISAM!) 



Pseudo-code: B Tree Insertions 

 

 

 

 

 

 

 

INSERTION OF KEY ’K’ 

 find the correct leaf node ’L’; 

 if ( ’L’ overflows ){ 

  split ’L’, and push middle key to parent node ’P’; 

  if (’P’ overflows){ 

   repeat the split recursively; } 

 else{ 

  add the key ’K’ in node ’L’;   

  /* maintaining the key order in ’L’ */  } 



B Tree: Deletions 

 Delete begins at root, and key comparisons 
direct it to a leaf (as in ISAM) 

 

 Delete entry (if found) in the located leaf  

 

 If an underflow occurs, merge nodes 

 

 

 

 

 

 

 

How do we define an underflow in a B tree? 



B Tree: Deletions 

 Four cases: 

 Case1: delete a key at a leaf – no underflow 

 

 Case2: delete non-leaf key – no underflow 

 

 Case3: delete leaf-key; underflow, and ‘rich sibling’ 

 

 Case4: delete leaf-key; underflow, and ‘poor sibling’ 

 

 

 

 

 

 

 

 



B Tree: Deletions 

 Four cases: 

 Case1: delete a key at a leaf – no underflow 

 

 Case2: delete non-leaf key – no underflow 

 

 Case3: delete leaf-key; underflow, and ‘rich sibling’ 

 

 Case4: delete leaf-key; underflow, and ‘poor sibling’ 

 

 

 

 

 

 

 

 



Examples of Deletions: Case 1 

 Easy case: delete ‘3’ 
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Examples of Deletions: Case 1 

 Easy case: delete ‘3’ 

 

 

 

 

 

 

 

1 

6 

7 

9 

13 

<6 

>6 <9 
>9 



B-Tree: Deletions 

 Four cases: 

 Case1: delete a key at a leaf – no underflow 

 

 Case2: delete non-leaf key – no underflow 

 

 Case3: delete leaf-key; underflow, and ‘rich sibling’ 

 

 Case4: delete leaf-key; underflow, and ‘poor sibling’ 

 

 

 

 

 

 

 

 



Examples of Deletions: Case 2 

 Delete ‘6’ 

 

 

 

 

 

 

 

Delete and 
Promote! 
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Examples of Deletions: Case 2 

 Delete ‘6’ 

 

 

 

 

 

 

 

1 3 7 

9 

13 

<6 

>6 <9 
>9 

Delete 

We still need to promote! 

How to promote? 
Pick the largest key from the left sub-tree (or the smallest from the right sub-tree). 



Examples of Deletions: Case 2 

 Delete ‘6’ 

 

 

 

 

 

 

 

1 7 

9 

13 

<6 

>6 <9 
>9 

3 
Promote 



Examples of Deletions: Case 2 

 Delete ‘6’ 

 

 

 

 

 

 

 

1 7 

9 

13 

<3 

>3 <9 
>9 

3 

FINAL TREE! 



B Tree: Deletions 

 Four cases: 

 Case1: delete a key at a leaf – no underflow 

 

 Case2: delete non-leaf key – no underflow 

 

 Case3: delete leaf-key; underflow, and ‘rich sibling’ 

 

 Case4: delete leaf-key; underflow, and ‘poor sibling’ 

 

 

 

 

 

 

 

 



Examples of Deletions: Case 3 

 Delete ‘7’ 

 

 

 

 

 

 

 

Delete and 
Borrow! 

1 3 
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>9 



Examples of Deletions: Case 3 

 Delete ‘7’ 

 

 

 

 

 

 

 

Delete 

1 3 

6 9 

13 

<6 

>6 <9 
>9 



Examples of Deletions: Case 3 

 Delete ‘7’ 

 

 

 

 

 

 

 

Borrow 

1 3 

6 9 

13 

<6 

>6 <9 
>9 Rich sibling 

‘Rich’ = can lend a key, without under-flowing 

‘Borrow’ = can happen ONLY through the parent 



Examples of Deletions: Case 3 

 Delete ‘7’ 

 

 

 

 

 

 

 

Borrow 

1 3 

6 9 

13 

<6 

>6 <9 
>9 Rich sibling 

NO!! 



Examples of Deletions: Case 3 

 Delete ‘7’ 

 

 

 

 

 

 

 

Borrow 

1 3 

6 9 

13 

<6 

>6 <9 
>9 



Examples of Deletions: Case 3 

 Delete ‘7’ 

 

 

 

 

 

 

 

Borrow 

1 

3 9 

13 

<6 

>6 <9 
>9 

6 



Examples of Deletions: Case 3 

 Delete ‘7’ 

 

 

 

 

 

 

 

Delete and 
borrow 
through 

the parent 

1 

3 9 

13 

<3 

>3 <9 
>9 

6 

FINAL TREE! 



B Tree: Deletions 

 Four cases: 

 Case1: delete a key at a leaf – no underflow 

 

 Case2: delete non-leaf key – no underflow 

 

 Case3: delete leaf-key; underflow, and ‘rich sibling’ 

 

 Case4: delete leaf-key; underflow, and ‘poor sibling’ 

 

 

 

 

 

 

 

 



Examples of Deletions: Case 4 

 Delete ‘13’ 

 

 

 

 

 

 

 

Delete and 
Merge! 
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Examples of Deletions: Case 4 

 Delete ‘13’ 

 

 

 

 

 

 

 

Delete 

1 3 
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>9 



Examples of Deletions: Case 4 

 Delete ‘13’ 

 

 

 

 

 

 

 

1 3 

6 
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9 <6 

>6 <9 
>9 

‘Poor’ = can host a key, without overflowing 

Merge with 
‘poor 

sibling’ 



Examples of Deletions: Case 4 

 Delete ‘13’ 

 

 

 

 

 

 

 

1 3 

6 

7 

9 <6 

>6 <9 
>9 

Merge with 
‘poor 

sibling’ 

Poor sibling 



Examples of Deletions: Case 4 

 Delete ‘13’ 

 

 

 

 

 

 

 

1 3 

6 

7 

9 <6 

>6 <9 
>9 

Merge, by pulling a key from the parent (the opposite of insertions!)  

Merge with 
‘poor 

sibling’ 



Examples of Deletions: Case 4 

 Delete ‘13’ 

 

 

 

 

 

 

 

Merge & 
Pull from 

Parent 

1 3 

6 

7 

<6 

>6 

9 



Examples of Deletions: Case 4 

 Delete ‘13’ 

 

 

 

 

 

 

 

Merge with 
‘poor 

sibling’ 

1 3 

6 

7 

<6 

>6 

9 

FINAL TREE! 

But, what if the parent underflows? 
 Repeat recursively! 



Pseudo-code: B Tree Deletions 

 

 

 

 

 

 

 

DELETION OF KEY ’K’ 

   locate key ’K’, in node ’N’ 

   if( ’N’ is a non-leaf node) { 

      delete ’K’ from ’N’; 

      find the immediately largest key ’K1’; 

         /* which is guaranteed   to be on a leaf node ’L’ */ 

      copy ’K1’ in the old position of ’K’; 

      invoke this DELETION routine on ’K1’ from the leaf node 

’L’; 

   else {  

/* ’N’ is a leaf node */ 

... (next slide..) 



Pseudo-code: B Tree Deletions 

 

 

 

 

 

 

 

/* ’N’ is a leaf node */ 

      if( ’N’ underflows ){ 

         let ’N1’ be the sibling of ’N’; 

         if( ’N1’ is "rich"){   /* ie., N1 can lend us a key */ 

            borrow a key from ’N1’  THROUGH the parent node; 

         }else{    /* N1 is 1 key away from underflowing */ 

            MERGE: pull the key from the parent ’P’, 

               and merge it with the keys of ’N’ and ’N1’  into a 

new node; 

            if( ’P’ underflows){ repeat recursively } 

         } 

   } 
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Clustered vs. Un-clustered Indexes 

 Indexes can be either clustered or un-clustered 

 

 Clustered Indexes: 
 When the ordering of data records is the same as 

(or close to) the ordering of entries in some index 

 

 Un-clustered Indexes: 
 When the ordering of data records differs from the 

ordering of entries in some index 

 

 

 

 

 

 

 

 



Clustered vs. Un-clustered Indexes 

 Is an index that uses Alternative (1) clustered or 
un-clustered? 
 Clustered 

 

 Is an index that uses Alternatives (2) or (3) 
clustered or un-clustered? 
 Clustered if data records are sorted on the search  

key field 
 

 In practice: 
 A clustered index is an index that uses Alternative (1) 
 Indexes that use Alternatives (2) or (3) are un-clustered 
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B+ Trees: Motivation 

 For clustering indexes, data records are scattered 

 

 

 

 

 

 

 

1 3 

6 

7 

9 

13 

<6 

>6 <9 
>9 

IDEA 1: replicate keys from non-leaf nodes, to make sure every key 
appears at only one leaf node! 



B+ Trees: Motivation 

 How can we facilitate sequential operations? 

 

 

 

 

 

 

 

1 3 

6 

7 

9 

13 

<6 

>6 <9 
>9 

IDEA 2: String all leaf nodes together! 



B+ Trees: Motivation 

 Towards B+ trees 

 

 

 

 

 

 

 Is this enough? 

1 3 
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6 

9 

9 

<6 

>=6 <9 
>=9 

7 13 



B+ Trees: Motivation 

 B+ trees 

 

 

 

 

 

 

 

1 3 

6 

6 

9 

9 

<6 

>=6 <9 
>=9 

7 13 

Vital for clustering indexes! 



B+ Tree: Searching for Entries 

 Search begins at root, and key comparisons direct it 
to a leaf (as in ISAM) 

 

 Example 1: Search for entry 5* 
Root 

17 24 30 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 

  



B+ Tree: Searching for Entries 

 Search begins at root, and key comparisons direct it 
to a leaf (as in ISAM) 

 

 Example 2: Search for entry 15* 

 

 

Root 

17 24 30 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 

15* is not found! 



B+ Trees: Inserting Entries 

 Find correct leaf L  

 

 Put data entry onto L 

 If L has enough space, done! 

 Else, must split  L into L and a new node L2 

 Redistribute entries evenly, copying up the middle key 

 

 Parent node may overflow 

 Push up middle key (splits “grow” trees; a root split 
increases the height of the tree)   

 



B+ Tree: Examples of Insertions 

 Insert entry 8* 

 

 
Root 

17 24 30 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 

Leaf is full; hence, split! 



B+ Tree: Examples of Insertions 

 Insert entry 8* 

 

 

Root 

17 24 30 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 

2* 3* 5* 7* 8* 

5 

The middle key (i.e., 5) is “copied up”  
and continues to appear in the leaf 



B+ Tree: Examples of Insertions 

 Insert entry 8* 

 

 

Root 

17 24 30 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 

2* 3* 5* 7* 8* 

5 17 24 30 13 5 

Parent is full; hence, split! 

> 2d keys and 2d + 1 pointers 



B+ Tree: Examples of Insertions 

 Insert entry 8* 

 

 

Root 

17 24 30 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 

2* 3* 5* 7* 8* 

5 

5 24 30 

17 

13 

The middle key (i.e., 17)  

is “pushed up” 



B+ Tree: Examples of Insertions 

 Insert entry 8* 

 

 

Root 

17 24 30 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 

2* 3* 5* 7* 8* 

5 24 30 

17 

13 



B+ Tree: Examples of Insertions 

 Insert entry 8* 

 

 

2* 3* 

Root 

17 

24 30 

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 5 

7* 5* 8* 

Splitting the root lead to an increase of height by 1! 

What about re-distributing entries instead of splitting nodes? 

FINAL TREE! 



B+ Tree: Examples of Insertions 

 Insert entry 8* 

 

 
Root 

17 24 30 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 

Leaf is full; hence, check the sibling ‘Poor Sibling’ 



B+ Tree: Examples of Insertions 

 Insert entry 8* 

 

 
Root 

17 24 30 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 
Do it through the parent 



B+ Tree: Examples of Insertions 

 Insert entry 8* 

 

 
Root 

17 24 30 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

Do it through the parent 

8* 

“Copy up” the new low key value! 

13 8 

But, when to redistribute and when to split? 



Splitting vs. Redistributing 

 Leaf Nodes 

 Previous and next-neighbor pointers must be updated 
upon insertions (if splitting is to be pursued) 

 Hence, checking whether redistribution is possible does 
not increase I/O 

 Therefore, if a sibling can spare an entry, re-distribute 

 

 Non-Leaf Nodes 

 Checking whether redistribution is possible usually 
increases I/O 

 Splitting non-leaf nodes typically pays off! 

 

 

 

 

 

 



B+ Insertions: Keep in Mind 

 Every data entry must appear in a leaf node;  
hence, “copy up” the middle key upon splitting 

 

 When splitting index entries, simply “push up” the 
middle key 

 

  Apply splitting and/or redistribution on leaf nodes 

 

 Apply only splitting on non-leaf nodes 
 



B+ Trees: Deleting Entries 

 Start at root, find leaf L where entry belongs 

 Remove the entry 

 If L is at least half-full, done!  

 If L underflows 

Try to re-distribute (i.e., borrow from a “rich 
sibling” and “copy up” its lowest key) 

 If re-distribution fails, merge L and a “poor 
sibling” 

Update parent 

And possibly merge, recursively 



B+ Tree: Examples of Deletions 

 Delete 19* 

2* 3* 

Root 
17 

24 30 

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 5 

7* 5* 8* 

Removing 19* does not entail an underflow 



B+ Tree: Examples of Deletions 

 Delete 19* 

2* 3* 

Root 
17 

24 30 

14* 16* 24* 27* 29* 33* 34* 38* 39* 

13 5 

7* 5* 8* 20* 22* 

FINAL TREE! 



B+ Tree: Examples of Deletions 

 Delete 20* 

2* 3* 

Root 
17 

24 30 

14* 16* 24* 27* 29* 33* 34* 38* 39* 

13 5 

7* 5* 8* 

Deleting 20* entails an underflow; hence, check a sibling for redistribution 

20* 22* 



B+ Tree: Examples of Deletions 

 Delete 20* 

2* 3* 

Root 
17 

24 30 

14* 16* 24* 27* 29* 33* 34* 38* 39* 

13 5 

7* 5* 8* 

The sibling is ‘rich’ (i.e., can lend an entry); hence, remove 20* and redistribute! 

20* 22* 



B+ Tree: Examples of Deletions 

 Delete 20* 

2* 3* 

Root 
17 

24 30 

14* 16* 24* 27* 29* 33* 34* 38* 39* 

13 5 

7* 5* 8* 22* 

“Copy up” 27*, the lowest value in the leaf from which we borrowed 24*  



B+ Tree: Examples of Deletions 

 Delete 20* 

2* 3* 

Root 
17 

30 

14* 16* 24* 27* 29* 33* 34* 38* 39* 

13 5 

7* 5* 8* 

“Copy up” 27*, the lowest value in the leaf from which we borrowed 24*  

22* 

27 



B+ Tree: Examples of Deletions 

 Delete 20* 

2* 3* 

Root 
17 

30 

14* 16* 24* 27* 29* 33* 34* 38* 39* 

13 5 

7* 5* 8* 22* 

27 

FINAL TREE! 



B+ Tree: Examples of Deletions 

 Delete 24* 

2* 3* 

Root 
17 

30 

14* 16* 24* 27* 29* 33* 34* 38* 39* 

13 5 

7* 5* 8* 

The affected leaf will contain only 1 entry and the sibling cannot lend  
any entry (i.e., redistribution is not applicable); hence, merge! 

22* 

27 



B+ Tree: Examples of Deletions 

 Delete 24* 

2* 3* 

Root 
17 

30 

14* 16* 24* 27* 29* 33* 34* 38* 39* 

13 5 

7* 5* 8* 22* 

27 

30 

22* 27* 29* 33* 34* 38* 39* 

Merge 

“Toss” 27 because the page that it was  
pointing to does not exist anymore! 



B+ Tree: Examples of Deletions 

 Delete 24* 

2* 3* 

Root 
17 

14* 16* 

13 5 

7* 5* 8* 

30 

22* 27* 29* 33* 34* 38* 39* 

Almost there… 



B+ Tree: Examples of Deletions 

 Delete 24* 

2* 3* 

Root 
17 

14* 16* 

13 5 

7* 5* 8* 

30 

22* 27* 29* 33* 34* 38* 39* 

But, this entails an underflow; hence,  
we must either redistribute or merge! 



B+ Tree: Examples of Deletions 

 Delete 24* 

2* 3* 

Root 
17 

14* 16* 

13 5 

7* 5* 8* 

30 

22* 27* 29* 33* 34* 38* 39* 

The sibling is “poor” (i.e., redistribution  
is not applicable); hence, merge! 



B+ Tree: Examples of Deletions 

 Delete 24* 

2* 3* 

Root 
17 

14* 16* 

13 5 

7* 5* 8* 

30 

22* 27* 29* 33* 34* 38* 39* 

Root 

13 5 

Lacks a pointer for 30! 

30 



B+ Tree: Examples of Deletions 

 Delete 24* 

2* 3* 

Root 
17 

14* 16* 

13 5 

7* 5* 8* 

30 

22* 27* 29* 33* 34* 38* 39* 

Root 

13 5 

Lacks a key value to create a complete index entry! 

30 



B+ Tree: Examples of Deletions 

 Delete 24* 

2* 3* 

Root 
17 

14* 16* 

13 5 

7* 5* 8* 

30 

22* 27* 29* 33* 34* 38* 39* 

Root 

13 5 

“Pull down” 17! 
30 17 



B+ Tree: Examples of Deletions 

 Delete 24* 

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39* 5* 8* 

Root 

30 13 5 17 

FINAL TREE! 



B+ Tree: Examples of Deletions 

 Delete 24* 
Root 

13 5 17 20 

22 

30 

14* 16* 17* 18* 20* 33* 34* 38* 39* 22* 27* 29* 21* 7* 5* 8* 3* 2* 

Assume (instead) the above tree during deleting 24* 

Now we can re-distribute (instead of merging) keys! 

24* was originally here 



B+ Tree: Examples of Deletions 

 Delete 24* 

14* 16* 33* 34* 38* 39* 22* 27* 29* 17* 18* 20* 21* 7* 5* 8* 2* 3* 

Root 

13 5 

17 

30 20 22 

DONE! It suffices to re-distribute only 20; 17 was redistributed for illustration. 



Next Class 

Query Optimization 

and Execution 

Relational Operators 

Files and Access Methods 

Buffer Management 

Disk Space Management 

DB 

Queries 

Transaction 
Manager 

Lock 
Manager 

Recovery 
Manager 

Continue (Hash-Based Indexing) 


