
Database Applications (15-415)

DBMS Internals: Part II
Lecture 10, February 17, 2014

Mohammad Hammoud

Today…
 Last Session:
 DBMS Internals- Part I

 Today’s Session:
 DBMS Internals- Part II
 Brief summaries of disks, disk space management, and

buffer management
 Files and Access Methods (for today, only file organizations

and ISAM Trees)

 Announcements:
 Project 1 is due tomorrow (Feb 18) by midnight
 The midterm exam is on Wednesday Feb 26 (all material

are included)

DBMS Layers

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Disks: A “Very” Brief Summary
 DBMSs store data in disks
 Disks provide large, cheap and non-volatile storage

 I/O time dominates!

 The cost depends on the locations of pages on

disk (among others)

 It is important to arrange data sequentially to
minimize seek and rotational delays

Disks: A “Very” Brief Summary
 Disks can cause reliability and performance problems

 To mitigate such problems we can adopt “multiple disks”

and accordingly gain:
1. More capacity
2. Redundancy
3. Concurrency

 To achieve only redundancy we apply mirroring

 To achieve only concurrency we apply striping

 To achieve redundancy and concurrency we apply RAID levels

2, 3, 4 or 5

DBMS Layers

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Disk Space Management: A “Very”
Brief Summary

 The lowest layer of the DBMS software is the disk
space manager
 It attempts to allocate/de-allocate and read/write pages as a

contiguous sequence of blocks on disks

 It abstracts hardware details from higher DBMS layers

 It can keep track of free blocks by maintaining a list of free
blocks or a bitmap with 1 bit for each disk block

 It typically does not rely on OS functionalities for practical
(e.g., portability) and technical (e.g., addressing large amount
of data) reasons

DBMS Layers

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Buffer Management: A “Very”
Brief Summary

 The buffer manager sits on top of the disk space manager
 It fetches pages from disks to RAM as needed in response to

read/write requests

 It hides the fact that not all data are in the RAM (similar to
the classical OS virtual memory)

 It applies effective replacement policies (e.g., LRU or Clock)

 It usually does not rely on the OS functionalities for reasons
like predicting (more accurately) page reference patterns and
forcing pages to disks (required by the WAL protocol)

DBMS Layers

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Outline

File Organizations

Why Indexing?

Indexed Static Access Method

Records, Pages and Files

 Higher-levels of DBMSs deal with records (not pages!)

 At lower-levels, records are stored in pages

 But, a page might not fit all records of a database
 Hence, multiple pages might be needed

 A collection of pages is denoted as a file

A Page

A Record

…

A File

File Operations and Organizations
 A file is a collection of pages, each containing a

collection of records

 Files must support operations like:
 Insert/Delete/Modify records
 Read a particular record (specified using a record id)
 Scan all records (possibly with some conditions on the

records to be retrieved)

 There are several organizations of files:
 Heap
 Sorted
 Indexed

Heap Files

 Records in heap file pages do not follow any
particular order

 As a heap file grows and shrinks, disk pages are
allocated and de-allocated

 To support record level operations, we must:
 Keep track of the pages in a file
 Keep track of the records on a page
 Keep track of the fields on a record

Supporting Record Level Operations

Keeping Track of

Pages in a File Records in a Page Fields in a Record

Heap Files Using Lists of Pages
 A heap file can be organized as a doubly linked list of pages

 The Header Page (i.e., <heap_file_name, page_1_addr> is
stored in a known location on disk

 Each page contains 2 ‘pointers’ plus data

Header
Page

Data
Page

Data
Page

Data
Page

Free
Page

Free
Page

Free
Page Pages with

Free Space

Full Pages

Heap Files Using Lists of Pages

 It is likely that every page has at least a few free bytes

 Thus, virtually all pages in a file will be on the free list!

 To insert a typical record, we must retrieve and examine
several pages on the free list before one with enough free
space is found

 This problem can be addressed using an alternative design
known as the directory-based heap file organization

Heap Files Using Directory of Pages
 A directory of pages can be maintained whereby each

directory entry identifies a page in the heap file

 Free space can be managed via maintaining:
 A bit per entry (indicating whether the corresponding page has any

free space)
 A count per entry (indicating the amount of free space on the page)

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORY

Supporting Record Level Operations

Keeping Track of

Pages in a File Records in a Page Fields in a Record

Page Formats

 A page in a file can be thought of as a collection of slots,
each of which contains a record

 A record can be identified using the pair <page_id, slot_#>,
which is typically referred to as record id (rid)

 Records can be either:
 Fixed-Length
 Variable-Length

Slot 1
Slot 2

Slot M
. . .

Fixed-Length Records
 When records are of fixed-length, slots become uniform and can

be arranged consecutively

 Records can be located by simple offset calculations

 Whenever a record is deleted, the last record on the page is

moved into the vacated slot
 This changes its rid <page_id, slot_#> (may not be acceptable!)

Slot 1
Slot 2

Slot N
. . .

N

Free
Space

Number
of Records

Fixed-Length Records

 Alternatively, we can handle deletions by using an
array of bits

 When a record is deleted, its bit is turned off, thus,
the rids of currently stored records remain the same!

. . .

M 1 0 . . .
M ... 3 2 1

Slot 1
Slot 2

Slot M

1 1 Number
of Slots (NOT Records)

Free
Space

Variable-Length Records

 If the records are of variable length, we cannot divide the
page into a fixed collection of slots

 When a new record is to be inserted, we have to find an
empty slot of “just” the right length

 Thus, when a record is deleted, we better ensure that all
the free space is contiguous

 The ability of moving records “without changing rids”
becomes crucial!

Pages with Directory of Slots
 A flexible organization for variable-length records is to

maintain a directory of slots with a <record_offset,
record_length> pair per a page

Page i
Rid = (i,N)

Rid = (i,2)

Rid = (i,1)

Pointer
to start
of free
space

SLOT DIRECTORY

N . . . 2 1
20 16 24 N

Slots Records can be moved
without changing rids!

Supporting Record Level Operations

Keeping Track of

Pages in a File Records in a Page Fields in a Record

Record Formats

 Fields in a record can be either of:
 Fixed-Length: each field has a fixed length and the

number of fields is also fixed

 Variable-Length: fields are of variable lengths but the

number of fields is fixed

 Information common to all records (e.g., number of
fields and field types) are stored in the system catalog

Fixed-Length Fields

 Fixed-length fields can be stored consecutively and
their addresses can be calculated using information
about the lengths of preceding fields

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

Variable-Length Fields

 There are two possible organizations to store variable-
length fields
1. Consecutive storage of fields separated by delimiters

4 $ $ $ $

Field
Count

Fields Delimited by Special Symbols

F1 F2 F3 F4

This entails a scan of records to locate a desired field!

Variable-Length Fields

 There are two possible organizations to store variable-
length fields
1. Consecutive storage of fields separated by delimiters
2. Storage of fields with an array of integer offsets

F1 F2 F3 F4

Array of Field Offsets

This offers direct access to a field in a record and stores NULL values efficiently!

Outline

File Organizations

Why Indexing?

Indexed Static Access Method

Motivation

 Consider a file of student records sorted by GPA

 How can we answer a range selection (E.g., “Find all
students with a GPA higher than 3.0”)?
 What about doing a binary search followed by a scan?
 Yes, but…

 What if the file becomes “very” large?
 Cost is proportional to the number of pages fetched
 Hence, may become very slow!

Page 1 Page 2 Page N Page 3 Data File

Motivation

 What about creating an index file (with one record
per page) and do binary search there?

 But, what if the index file becomes also “very” large?

Page 0 Page 1 Page N Page 2 Data File

Index File P 0 K 1 P 1 K 2 P 2 K N P N

Index Entry = <first key on the page, pointer to the page>

Motivation

 Repeat recursively!

Non-leaf
Pages

Pages
Leaf

Each tree page is a disk page and all data records reside (if chosen to be
part of the index) in ONLY leaf pages

How else data records can be stored?

Where to Store Data Records?

 In general, 3 alternatives for “data records” (k*)
can be adopted:
 Alternative (1): K* is an actual data record with key k

 Alternative (2): K* is a <k, rid> pair, where rid is the

record id of a data record with search key k

 Alternative (3): K* is a <k, rid-list> pair, where rid-list

is a list of rids of data records with search key k

Where to Store Data Records?

 In general, 3 alternatives for “data records” (k*)
can be adopted:
 Alternative (1): K* is an actual data record with key k

 Alternative (2): K* is a <k, rid> pair, where rid is the

record id of a data record with search key k

 Alternative (3): K* is a <k, rid-list> pair, where rid-list

is a list of rids of data records with search key k

A (1): Leaf pages contain the actual data (i.e., the data records)

A (2): Leaf pages contain the <key, rid> pairs and actual data records
are stored in a separate file

A (3): Leaf pages contain the <key, rid-list> pairs and actual data
records are stored in a separate file

The choice among these alternatives is orthogonal to the indexing technique.

ISAM Trees: Page Overflows

 Now, what if there are a lot of insertions?

Non-leaf
Pages

Pages
Leaf

Overflow
page

Primary pages

This structure is referred to as Indexed Sequential Access Method (ISAM)

Outline

Files and File Organizations

Why Indexing?

Indexed Static Access Method

ISAM File Creation

 How to create an ISAM file?
 All leaf pages are allocated sequentially and

sorted on the search key value

 If Alternative (2) or (3) is used, the data records

are created and sorted before allocating
leaf pages

 The non-leaf pages are subsequently allocated

An Example of ISAM Trees

2 Entries Per Page.

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

ISAM: Searching for Entries

 Search begins at root, and key comparisons direct it
to a leaf

 Search for 27*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40
Root

ISAM: Inserting Entries

 The appropriate page is determined as for a search, and the
entry is inserted (with overflow pages added if necessary)

 Insert 23*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40
Root

23*
Overflow
Pages

Leaf

Index
Pages

Pages

Primary

ISAM: Inserting Entries

 The appropriate page is determined as for a search, and the
entry is inserted (with overflow pages added if necessary)

 Insert 48*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40
Root

23* 48*

ISAM: Inserting Entries

 The appropriate page is determined as for a search, and the
entry is inserted (with overflow pages added if necessary)

 Insert 41*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40
Root

23* 48* 41*

ISAM: Inserting Entries

 The appropriate page is determined as for a search, and the
entry is inserted (with overflow pages added if necessary)

 Insert 42*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40
Root

23* 48* 41*

42* Chains of overflow pages can easily develop!

ISAM: Deleting Entries

 The appropriate page is determined as for a search, and the
entry is deleted (with ONLY overflow pages removed when
becoming empty)

 Delete 42*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40
Root

23* 48* 41*

42*

ISAM: Deleting Entries

 The appropriate page is determined as for a search, and the
entry is deleted (with ONLY overflow pages removed when
becoming empty)

 Delete 42*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40
Root

23* 48* 41*

ISAM: Deleting Entries

 The appropriate page is determined as for a search, and the
entry is deleted (with ONLY overflow pages removed when
becoming empty)

 Delete 42*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40
Root

23* 48* 41*

ISAM: Deleting Entries

 The appropriate page is determined as for a search, and the
entry is deleted (with ONLY overflow pages removed when
becoming empty)

 Delete 51*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40
Root

23* 48* 41*

Note that 51 still appears in index levels, but not in leaf!

ISAM: Deleting Entries

 The appropriate page is determined as for a search, and the
entry is deleted (with ONLY overflow pages removed when
becoming empty)

 Delete 55*

10* 15* 20* 27* 33* 37* 40* 46* 55* 63* 97*

20 33 51 63

40
Root

23* 48* 41*

Primary pages are NOT removed, even if they become empty!

ISAM: Some Issues
 Once an ISAM file is created, insertions and deletions affect only

the contents of leaf pages (i.e., ISAM is a static structure!)

 Since index-level pages are never modified, there is no need to
lock them during insertions/deletions
(critical for concurrency!)

 Long overflow chains can develop easily
 The tree can be initially set so that ~20% of each page is free

 If the data distribution and size are relatively static, ISAM might

be a good choice to pursue!

Next Class

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Transaction
Manager

Lock
Manager

Recovery
Manager

Cont’d: B and B+ Trees

	Database Applications (15-415)��DBMS Internals: Part II�Lecture 10, February 17, 2014
	Today…
	DBMS Layers
	Disks: A “Very” Brief Summary
	Disks: A “Very” Brief Summary
	DBMS Layers
	Disk Space Management: A “Very” Brief Summary
	DBMS Layers
	Buffer Management: A “Very” �Brief Summary
	DBMS Layers
	Outline
	Records, Pages and Files
	File Operations and Organizations
	Heap Files
	Supporting Record Level Operations
	Heap Files Using Lists of Pages
	Heap Files Using Lists of Pages
	Heap Files Using Directory of Pages
	Supporting Record Level Operations
	Page Formats
	Fixed-Length Records
	Fixed-Length Records
	Variable-Length Records
	Pages with Directory of Slots
	Supporting Record Level Operations
	Record Formats
	Fixed-Length Fields
	Variable-Length Fields
	Variable-Length Fields
	Outline
	Motivation
	Motivation
	Motivation
	Where to Store Data Records?
	Where to Store Data Records?
	ISAM Trees: Page Overflows
	Outline
	ISAM File Creation
	An Example of ISAM Trees
	ISAM: Searching for Entries
	ISAM: Inserting Entries
	ISAM: Inserting Entries
	ISAM: Inserting Entries
	ISAM: Inserting Entries
	ISAM: Deleting Entries
	ISAM: Deleting Entries
	ISAM: Deleting Entries
	ISAM: Deleting Entries
	ISAM: Deleting Entries
	ISAM: Some Issues
	Next Class

