
15-415: Database Applications

Project 1: Querying the MovieLens Database

School of Computer Science

Carnegie Mellon University, Qatar

Fall 2016

Assigned date: September 18, 2016

Due date: October 04, 2016 by 11:59PM

I. Project Objectives:

The objectives of this project are to help students in: (a) practicing and applying the

constructs of SQL, (b) querying a real dataset such as MovieLens, and (c) appreciating

the power of SQL in extracting and analyzing useful information from real datasets.

II. Loading the MovieLens Database:

The MovieLens dataset is composed of information about 10,681 movies and their

actors, directors, ratings and tags, all gathered from the online movie recommender

service MovieLens. For this project, we will query the MovieLens dataset to extract

useful information about movies.

The project archive (posted on the course web-page) contains five files. Namely,

movies.dat, actors.dat, genres.dat, tags.dat, and tag_names.dat, obtained from the

MovieLens Dataset. The files have been preprocessed and are ready to import into

your project's database. Create the following five relations under your database and

import the data from each file into the corresponding relation: [3 Points]

movies(mid: integer, title: varchar, year: date, rating: real, num_ratings: integer)

actors(mid: integer, name: varchar, cast_position: integer)

genres(mid: integer, genre: varchar)

tags(mid: integer, tid: integer)

tag_names(tid: integer, tag: varchar)

In the movie relation, each movie has a unique mid, title, year of release, an overall

user rating between 0 and 5.0 computed as the average of num_ratings ratings.

Additional information about a movie is recorded in the remaining relations and is

self-explanatory. Note that cast_position is the position of an actor in a movie’s cast

list. For example, in the movie ´Twilight´, the cast positions of Kristen Stewart and

Robert Pattinson are 1 and 2 respectively.

III. Querying the MovieLens Database:

For each of the following questions, write and execute an SQL query that achieves the

required task using PostgreSQL. You may define and use VIEWS whenever you find

them suitable.

1. Print all movie titles starring ‘Daniel Craig’, sorted in an ascending alphabetical

order. [2 Points]

2. Print names of the cast of the movie ‘The Dark Knight’ in an ascending alphabetical

order. [2 Points]

3. Print the distinct genres in the database and their corresponding number of movies N

where N is greater than 1000, sorted in the ascending order of N. [2 Points]

4. For each year, print the movie title, year, and rating, sorted in the ascending order of

year and the descending order of movie rating. [2 Points]

5. Critiques say that some words used in tags to convey emotions are very recurrent. To

convey positive and negative emotions, the words ‘good’ and ‘bad’, respectively, are

used predominantly in tags. Print all movie titles whose audience opinion is split (i.e.,

has at least one audience who expresses positive emotion and at least one who

expresses negative emotion). [4 Points]

6. One would expect that the movie with the highest number of user ratings is either the

highest rated movie or perhaps the lowest rated movie. Let’s find out if this is the case

here. [8 Points]

6.1 Print all information (mid, title, year, num ratings, rating) for the movie(s)

with the highest number of ratings. [1 Point]

6.2 Print all information (mid, title, year, num ratings, rating) for the movie(s)

with the highest rating (include tuples that tie), sorted by the ascending order

of movie id. [1 Point]

6.3 Is (Are) the movie(s) with the most number of user ratings among these

highest rated movies? Print the output of the query that will check our

conjecture (i.e., your query will print the movie(s) that has (have) the highest

number of ratings as well as the highest rating). [2 Points]

6.4 Print all information (mid, title, year, num ratings, rating) for the movie(s)

with the lowest rating (include tuples that tie), sorted by the ascending order of

movie id. [1 Point]

6.5 Is (Are) the movie(s) with the most number of user ratings among these

lowest rated movies? Print the output of the query that will check our

conjecture (i.e., your query will print the movie(s) that has (have) the highest

number of ratings as well as the lowest rating). [2 Points]

6.6 In conclusion, is our hypothesis or conjecture true for the MovieLens database?

[1 Point]

7. Print the movie title, year, and rating of the lowest and highest movies for each year in

2005 – 2011, inclusive, in the ascending order of year. In case of a tie, print the

records in the ascending order of title. [10 Points]

For your reference, a sample output for the years 2003 – 2005 is shown below:

year | title | rating

------|--------------------|-------

2003 | House of the Dead | 3.8

2003 | Oldeuboi | 4.6

2004 | Catwoman | 1.4

2004 | Bin-jip | 4.4

2005 | Alone in the Dark | 2.2

2005 | Chinjeolhan | 4.7

2005 | Star Wars | 4.7

8. Let us find out who are the ‘no flop’ actors. A ‘no flop’ actor can be defined as one

who has played only in movies which have a rating greater than or equal to 4. We

split this problem into the following steps. [12 Points]

8.1 Create a view called high ratings which contains the distinct names of all

actors who have played in movies with a rating greater than or equal to 4.

Similarly, create a view called low ratings which contains the distinct names

of all actors who have played in movies with a rating less than 4. Print the

number of rows in each view. [3 Points]

8.2 Use the above views to print the number of ‘no flop’ actors in the database.

[2 Points]

8.3 For each ‘no flop’ actor, print the name of the actor and the number of movies

N that he/she played in, sorted in descending order of N. Finally, print the top

10 only. [7 Points]

9. Let us find out who is the actor with the highest ‘longevity.’ Print the name of the

actor/actress who has been playing in movies for the longest period of time (i.e., the

time interval between their first movie and their last movie is the greatest).

[15 Points]

10. Let us find the close friends of Annette Nicole. Print the names of all actors who have

starred in (at least) all movies in which Annette Nicole has starred in.

Note that it is OK if these actors have starred in more movies than Annette Nicole

has played in. Since PostgreSQL does not provide a relational division operator, we

will guide you through the following steps (you might find it useful to consult the

slides or the textbook for the alternative “double negation” method of performing

relational division). [15 Points]

10.1 First, create a view called co_actors, which returns the distinct names of actors

who played in at least one movie with Annette Nicole. Print the number of

rows in this view. [3 Points]

10.2 Second, create a view called all_combinations which returns all possible

combinations of co_actors and the movie ids in which Annette Nicole played.

Print the number of rows in this view. Note how that this view contains fake

(co_actor, mid) combinations! [4 Points]

10.3 Third, create a view called non_existent from the view all_combinations by

removing all legitimate (co_actor,mid) pairs (i.e., pairs that exist in the actors

table). Print the number of rows in this view. [4 Points]

10.4 Finally, from the view co_actors, eliminate the distinct actors that appear in

the view non_extistent. Print the names of all co_actors except Annette

Nicole. [4 Points]

11. Let us find out who is the most social actor. A social actor is the one with the highest

number of distinct co-actors. We will break this into two sub-tasks: [15 Points]

11.1 For the actor Tom Cruise, print his name and the number of distinct co-actors.

[5 Points]

11.2 For each actor, compute the number of distinct co-actors. For the highest such

number, print the name of the actor and the number of distinct co-actors. In

case of a tie, print the records sorted in alphabetical order by name.

[10 Points]

12. We will now write some queries for a Content-Based Movie Recommendation System

such as NetFlix. In reality, the accuracy of the recommendations is so important that

NetFlix. For instance, offered a prize of one million dollars for the first algorithm that

could beat its own recommendation algorithm by 10%. The prize was finally won in

2009, by a team of researchers called “Bellkor’s Pragmatic Chaos”. However, in this

project we shall deploy a simple algorithm that may or may not produce optimal

recommendations.

Content-based recommendations focus on the properties of items, in our case movies.

The similarity of two movies is determined by measuring the similarity of their

properties. For a movie item, we shall consider the following five properties: actors,

tags, genres, year, and rating.

Given two movies X and Y, the similarity of Y to X, sim(X,Y), can be computed as:

fraction of 𝑐𝑜𝑚𝑚𝑜𝑛 𝑎𝑐𝑡𝑜𝑟𝑠 + fraction of 𝑐𝑜𝑚𝑚𝑜𝑛 𝑡𝑎𝑔𝑠
+ fraction of 𝑐𝑜𝑚𝑚𝑜𝑛 𝑔𝑒𝑛𝑟𝑒𝑠 + 𝑎𝑔𝑒 𝑔𝑎𝑝 + 𝑟𝑎𝑡𝑖𝑛𝑔 𝑔𝑎𝑝

5

where fraction is the number of common elements between X and Y divided by the

number of elements of X, age gap is the normalized difference between the production

years of X and Y, and rating gap is the normalized difference between the ratings of

X and Y. Intuitively, the smaller the gaps are, the better (since movies of the same

decade and rating are more likely to be similar). Moreover, note that we divide by five

because each property is given an equal weight of 1.

Given a user who is known to like the movie ‘Mr. & Mrs. Smith’, write a query that

prints the movie title, rating, and similarity percentage (i.e., similarity * 100) for the

top 10 movies that are most similar to the ‘Mr. & Mrs. Smith’ movie, ordered by the

similarity percentage. [10 Points]

IV. Getting Help:

You can get help by visiting the professor and the TA during their office hours or by

appointment. You can also post your questions on Piazza. The link for the course

home page on Piazza is: http://piazza.com/qatar.cmu/fall2016/15415/home

V. Deliverables:

 Write all your SQL queries in a PDF document named P1-<your_andrew_id>.pdf

 For each question and/or sub-question, create two files namely

o Q<question_#>-[<sub-question_#>]-<your_andrew_id>.txt, and

o Q<question_#>-[<sub-question_#>]-<your_andrew_id>.csv

containing the query and its output result respectively.

 Zip all your files into a single archive file and submit it to

/afs/qatar.cmu.edu/usr10/mhhammou/www/15415-f16/handin/p1/andrew_id/

by October 4, 11:59 PM. In case of any problems, you can email your project

archive to the professor and the TA.

VI. Late Policy:

 If you hand in on time, there is no penalty (duh!).

 0 -24 hours late = 25% penalty.

 2 4 -48 hours late = 50% penalty.

 More than 48 hours late = you lose all the points for this project.

NOTE: You can use your grace-days quota. For details about the quota, please refer to

the syllabus.

http://piazza.com/qatar.cmu/fall2016/15415/home

