
An Intra-Tile Cache Set Balancing Scheme

Mohammad Hammoud, Sangyeun Cho, and Rami G. Melhem
Department of Computer Science, University of Pittsburgh

Pittsburgh, PA, USA
mhh@cs.pitt.edu, cho@cs.pitt.edu, melhem@cs.pitt.edu

ABSTRACT
This poster describes an intra-tile cache set balancing strat-
egy that exploits the demand imbalance across sets within
the same L2 cache bank. This strategy retains some frac-
tion of the working set at underutilized sets so as to satisfy
far-flung reuses. It adapts to phase changes in programs and
promotes a very flexible sharing among cache sets referred
to as many-from-many sharing. Simulation results using a
full system simulator demonstrate the effectiveness of the
proposed scheme and show that it compares favorably with
related cache designs on a 16-way tiled CMP platform.

Categories and Subject Descriptors: B.3.2 [Memory
Structures]: Design Styles —cache memories

General Terms: Management.

Keywords: Set Balancing, Many-From-Many Sharing.

1. INTRODUCTION AND MOTIVATION
Computer programs exhibit a non-uniform distribution of
memory accesses across different cache sets. In this work
we observe that some cache sets at different physically dis-
tributed, logically shared L2 banks on a tiled CMP suf-
fer from large local miss ratios while some others remain
underutilized. Furthermore, we observe that a very large
fraction of cache lines placed at L2 remain unused between
placement and eviction. As such, these lines don’t con-
tribute to good utilization of the silicon estate devoted to
the caches. One reason for this phenomenon is that cache
lines might be re-referenced at distances greater than the
cache associativity. The problem is magnified on CMPs
that share caches as on-chip lifetimes of cache lines can
become shorter due to the increasing interferences between
co-scheduled threads/processes. Cache performance can be
improved by retaining some fraction of the working set long
enough to provide cache hits on future reuses. Our work ex-
tends the lifetime of cache lines by exploiting the large asym-
metry in cache sets’ usages and flexibly retaining cache lines
evicted from highly pressured sets at underutilized ones.

2. THE PROPOSED MECHANISM
We propose an intra-tile cache set balancing strategy that
we refer to as Flexible Set Balancing (FSB). FSB allows a
highly pressured set (or source) to retain its lines at many
underutilized sets (or destinations) within the same L2 bank

Copyright is held by the author/owner(s).
PACT’10, September 11–15, 2010, Vienna, Austria.
ACM 978-1-4503-0178-7/10/09.

(or tile). We refer to this sharing as many-from-one sharing
because the capacity of many sets can be shared by a single
set. Furthermore, FSB allows many source sets to retain
their lines at a single destination set. This sharing is referred
to as one-from-many sharing because the capacity of a single
set can be shared by multiple sets. Consequently, FSB offers
a very flexible (many-from-many) capacity sharing among
cache sets. FSB adapts to phase changes in programs and
doesn’t associate any set with any other set (i.e., make a
set a sole owner of another set). As long as there is a space
available at any set, any source set can immediately leverage
that space.

FSB is oriented towards last level caches (in our case L2).
FSB requires three main capabilities: (1) deciding upon
source and destination sets, (2) retaining working sets of
source sets at destination sets in a many-from-many sharing
fashion, and (3) locating retained blocks on destination sets
upon future reuses. We next describe each capability.

2.1 Retention Limits
The pressure at a cache set can be measured in terms of
cache misses or hits. In this work we adopt cache misses
as a pressure function. The pressure information can be
recorded at an array embedded within the L2 controller of
a cache bank. Each cache set corresponds to an entry in
the pressure array and the indexes of the cache sets are used
to index the array. Each time a miss occurs at a certain
set, the array can be updated accordingly (by incrementing
the corresponding array slot). In order to allow the array
to accurately represent pressures at sets, after every time
interval, we keep only part of the pressure values (e.g., 0.25
of values by shifting each value 2 bits to the right).

We define two limits, the low pressure limit (LPL) and the
high pressure limit (HPL), to allow a range of source sets to
retain their blocks at a range of destination sets. A range
can encompass one or many sets. When the pressure of a
set is below LPL, the set is deemed to be within the limit
of the destination sets and can receive lines from any source
set. In contrast, when the pressure of a set is above HPL,
the set is considered to be within the limit of source sets and
is permitted, accordingly, to retain its lines at multiple des-
tinations sets. Clearly, this allows many-from-many sharing
among cache sets. LPL and HPL are defined in equations
(1) and (2). The range of source and destination sets can be
expanded or contracted by altering α. The max and min pa-
rameters are the maximum and minimum pressures on the
pressure array.

LowPressureLimit(LPL) = min + (α × (max - min)) (1)

HighPressureLimit(HPL) = max − (α × (max - min)) (2)

549



2.2 Retention Policy
FSB maintains a small retention table (RT) per each L2
bank. Each cache set has a corresponding RT entry. As
such, the number of entries in RT equals the number of cache
sets in the L2 bank. RT stores in the i-th entry, RT(i), up
to P pointers, each either marked as invalid or pointing to
a destination set with a different index. These pointers can
be used by FSB to locate retained blocks upon future reuses
(more on this shortly).

When an LRU line, L, is evicted from a set i, our retention
policy proceeds as follows:

1. The i’s corresponding pressure value in the pressure
array is looked up, minimum (MIN) and maximum
(MAX) values are generated, and HPL and LPL are
calculated.

2. If i’s pressure is greater than HPL, i becomes a source
set and L is deemed eligible for retention. Otherwise,
L is discarded.

3. In parallel, RT(i) entry is looked up. If L is eligible
for retention and all the P pointers in RT(i) are in-
valid, MIN is checked. If MIN is less than LPL, L is
retained at the cache set corresponding to MIN and an
invalid pointer in RT(i) is marked to point to that set.
Otherwise, L is discarded.

4. If RT(i) entry, on the other hand, has valid pointers (or
at least one valid pointer), these pointers are used to
index the pressure array, and the minimum value out of
the indexed values is generated and compared against
LPL. If satisfied, L is retained at the corresponding
cache set and no new pointer is marked to point to
that set. Otherwise, the policy checks if an invalid
pointer exists.

5. If an invalid pointer is found in RT(i) and MIN is less
than LPL, L is retained at the cache set corresponding
to MIN and one of the invalid pointers is marked to
point to that set. Otherwise, L is discarded.

Note that upon retention, L is inserted as the most recently
used (MRU) line in the selected destination set. The LRU
line evicted at the destination set, to make room for L, is
discarded simply because the destination set doesn’t satisfy
HPL. As such, FSB avoids ripple effects.

The LRU evicted line, L, at the source set can be either
native or retained. If L is native, FSB simply proceeds with
the retention process. Otherwise, we check if L is active.
We define L to be active if at least one core on the CMP
platform had cached a copy of L (in its L1). This can be
easily determined from L’s associated directory bit vector.
We assume that an active L is currently in use by the caching
core(s) and, accordingly, attempt to retain it again. If L is
retained and not active, we assume that it has been kept
long enough in the cache without providing a cache hit, and,
accordingly, avoid retaining it over again (although eligible
for retention).

We update the pressure array not only at a miss but fur-
ther when retaining a line at a destination set. Such an
update is critical so as to reflect the progressive increasing
pressure on a destination set each time it receives a retained
line. This makes FSB very flexible and attentive as it allows
selecting a different destination set once the pressure of the
current destination set surpasses LPL.

Finally, retaining cache lines at destination sets requires
extending lines’ tags with index fields. This is due to the

fact that a cache line must have a one-to-one correspondence
with a unique address. Upon discarding a retained line, R,
from a destination set, D, we match R’s augmented index
j with the augmented indexes of D’s resident lines. A “no
match” outcome means that R is the last retained line at
D from the source set j. Consequently, we index RT(j)
entry and invalidate the pointer that points to D. Finally,
we note that the retention process is activated in parallel
with the resolution of a definitive miss. As such, the latency
required to retain a cache block becomes completely hidden
as resolving an L2 miss usually takes hundreds of cycles.

2.3 Lookup Policy
Upon a request to a cache line, L, the cache starts by always
looking up the set i that L’s index designates. RT(i) entry
is also looked up concurrently. If a hit occurs at set i, the
request is satisfied. If, on the other hand, a miss occurs at
set i, the cache sets identified by the pointers in RT(i) (if
any) are serially looked up until either a secondary hit is ac-
quired or a definitive miss is proclaimed. Sets’ lookups are
serialized in order to keep FSB simple, avoid port contention,
and reduce power dissipation. We found in our experimental
evaluation that such a serial policy doesn’t hurt performance
because the gain from hits on retained lines exceedingly off-
sets the loss from sequential lookups. If no secondary hit is
obtained and a definitive miss is asserted, the pressure array
is updated at slot i and the retention policy is triggered. In
parallel, the requested cache line is fetched from the main
memory and inserted at set i.

3. PERFORMANCE RESULTS
For the evaluations, we use the simics simulator and our own
CMP cache modules developed in-house. A 16-tile CMP
platform is utilized running with Solaris 10 OS. Each tile
encompasses 32KB I/D L1 caches and a 512KB L2 cache
bank. We assume a low pressure limit (LPL) and a high
pressure limit (HPL) each with α = 0.2. Lastly, we use
several multithreading and multiprogramming benchmarks
from SPEC2006, PARSEC, and SPLASH-2 suites

We ran FSB with 1, 2, 4, and 8 pointers in RT(i) and
found that, on average, they achieve miss rate reductions of
14.6%, 23.9%, 36.6%, and 48.7% over the nominal shared
CMP scheme, respectively. This effectively translates to
4.3%, 8.8%, 13%, and 18.6% improvement in system per-
formance, respectively. Furthermore, we conducted a sensi-
tivity study on different α values (0.1 and 0.3, in addition
to 0.2) and observed a low sensitivity of FSB to the exam-
ined values. Lastly, we compared FSB against some recent
proposals including dynamic set balancing (DSBC) [2] and
variable-way set associative (V-WAY) [1]. Results demon-
strated that FSB with 4 pointers outperforms V-WAY and
DSBC by averages of 7.8% and 8.8%, respectively.

4. REFERENCES
[1] M. K. Qureshi, D. Thompson, and Y. N. Patt. “The

V-WAY Cache: Demand-Based Associativity via
Global Replacement,” Proc. Int’l Symp. Computer

Architecture, June 2005.

[2] D. Rolán, B. B. Fraguela, and R. Doallo “Adaptive
line placement with the set balancing cache,” Proc.

Int’l Symp. Microarchitecture, Dec. 2009.

550


