CS15-319 / 15-619 Cloud Computing

Recitation 15 April 30th, 2013

جامعۃ کارنیجی میلود فی قطر Carnegie Mellon University Qatar

Announcements

- Checkpoint Quiz Unit 5, due on:
 Friday May 3rd at midnight
- Project 4, Part c, due on:

– Friday May 3rd at midnight

Announcements

- Open up S3 location of hand ins:
 - Give access to your S3 bucket to:
 - public
 - <u>onlinecloudcomputingcourse@gmail.com</u>
 - You could lose credit or be penalized otherwise
 - See Piazza Post on how to open up your handin directory
- Encounter a general bug:
 - Post on Piazza
- Encounter a grading bug:
 - Post Privately on Piazza
- Post feedback on OLI

Announcements

- Amazon Account Closure
 - After project deadline
 - Amazon accounts will be unlinked from the course payment account
 - Shut down instances and services or your card on file may get charged.
- Course Survey
 - Anonymous, Web form link will be dispatched by email.
 - Students who complete will receive 2% bonus points boost on final grade.

HBase Tips

- Updated hbase.properties file
 - <u>https://s3.amazonaws.com/15-319-s13/proj4/proj4-hbase.properties</u>
 - Use this properties file if you are having trouble with the previous version.

New Modules

- Unit 5 Distributed Programming and Analytics Engines for the Cloud
 - Introduction to Distributed Programming for the Cloud
 - Distributed Analytics Engines for the Cloud: MapReduce
 - Distributed Analytics Engines for the Cloud: Pregel
 - Distributed Analytics Engines for the Cloud: GraphLab
 - GraphLab
 - Data Structure and Graph Flow
 - The Architectural Model
 - The Programming Model
 - The Computation Model
 - Fault Tolerance
 - Distributed Programming and Analytics Engines for the Cloud : **Summary**
 - Checkpoint Quiz 🔶

Project 4, Part c

- Project 4, Part a
 - MapReduce
 - Project 4 Survey
- Project 4, Part b
 - Input Text Predictor: NGram Generation
- Project 4, Part c
 - Input Text Predictor: Language Model and User
 Interface

Recap Input Text Prediction

Construct an Input Text Predictor

	wiki		Advanced Searc
Advertising	wikipedia	250,000,000 results	<u>Language Tools</u>
	wikipedia encyclopedia	16,300,000 results	
	wiki answers	24,400,000 results	
	wikimapia	12,000,000 results	
	wikihow	1,780,000 results	
	wikiquote	3,280,000 results	
	wikispaces	7,800,000 results	
	wikitravel	2,270,000 results	
	wikimedia	55,700,000 results	
	wikipedia dictionary	20,300,000 results	
		<u>close</u>	

Google Suggest

WordLogic iKnowU keyboard

How to Construct an Input Text Predictor?

1. Given a language corpus

- Project Gutenberg (2.5GB, already on S3)
- English Language Wikipedia Articles (30GB, on S3 soon)
- 2. Construct an n-gram model of the corpus
 - An n-gram is a phrase with n words.
 - For example a set of 1,2,3,4,5-grams with counts:
 - this 1000
 - this is 500
 - this is a 125
 - this is a blue 60
 - this is a blue house 20

How to Construct an Input Text Predictor?

3. Build a statistical language model that contains the probability of a word appearing after a phrase

$$-\Pr(is|this) = \frac{Count(this is)}{Count(this)} = \frac{500}{1000} = 0.5$$
$$-\Pr(a|this is) = \frac{Count(this is a)}{Count(this is)} = \frac{125}{500} = 0.25$$

4. Store and index the words and their probabilities to use in an application

Discussions

• Your questions...

Upcoming Deadlines

• Unit 5:

Unit 5: Distributed Programming and Analytics Engines for the Cloud

Module 21: Distributed Analytics Engines for the Cloud: GraphLab

Module 22: Distributed Programming and Analytics Engines for the Cloud: Summary

Quiz 5: Distributed Programming and Analytics Engines for the Cloud

<u>Checkpoint</u>

Available Now Due 5/3/13 11:59 PM

Project 4

