CS15-319 / 15-619 Cloud Computing

Recitation 14 April 23rd, 2013

جامعۃ کارنیجی میلود فی قطر Carnegie Mellon University Qatar

Announcements

- Checkpoint Quiz Unit 5, due on:
 Friday May 3rd at midnight
- Project 4, Part c, due on:
 Friday May 3rd at midnight
- Last Recitation (#15):

– Tuesday, April 30th

Announcements

- Open up S3 location of hand ins:
 - Give access to your S3 bucket to:
 - public
 - <u>onlinecloudcomputingcourse@gmail.com</u>
 - You could lose credit or be penalized otherwise
 - See Piazza Post on how to open up your handin directory
- Encounter a general bug:
 - Post on Piazza
- Encounter a grading bug:
 - Post Privately on Piazza
- Post feedback on OLI

Project 4 Student Progress

- Part b: Input Text Predictor: N-gram Generation
 97% Students Completed
- Stats:
 - Total n-grams generated from the Gutenberg Dataset :
 - Approximately 477 million
 - Fastest Computation
 - 16 minutes 48 seconds
 - 19 c1.xlarge @ \$0.07 spot price
 - Cluster cost: \$1.3 per hour
 - Slowest Computation
 - 4 m1.small (with 1000 reducers!)
 - 8 hours and 25 minutes

More MapReduce Tips

- Watch out for Whirr bugs
 - Failure to launch instances
 - Check AWS Management Console to verify
 - Failure to install and configure Hadoop correctly
 - Run sudo jps on Master node to verify that the Hadoop processes are running correctly. Test using example jobs or small data first.
 - Using different instance types for master and slave nodes may provision them in different zones
 - 32 bit AMIs will not work for larger instance types (m1.large – etc. need 64 bit)

New Modules

- Unit 5 Distributed Programming and Analytics Engines for the Cloud
 - Introduction to Distributed Programming for the Cloud
 - Distributed Analytics Engines for the Cloud: MapReduce
 - Distributed Analytics Engines for the Cloud: Pregel
 - Pregel
 - The Computation and Architectural Models
 - The Data Structure and Storage
 - The Graph Flow and API
 - Architectural Model and Workflow
 - Fault Tolerance

Project 4, Part c

- Project 4, Part a
 - MapReduce
 - Project 4 Survey
- Project 4, Part b
 - Input Text Predictor: NGram Generation
- Project 4, Part c
 - Input Text Predictor: Language Model and User
 Interface

Recap Input Text Prediction

Construct an Input Text Predictor

	wiki		Advanced Search
<u>Advertising</u>	wikipedia	250,000,000 results	<u>Language Tools</u>
	wikipedia encyclopedia	16,300,000 results	
	wiki answers	24,400,000 results	
	wikimapia	12,000,000 results	
	wikihow	1,780,000 results	
	wikiquote	3,280,000 results	
	wikispaces	7,800,000 results	
	wikitravel	2,270,000 results	
	wikimedia	55,700,000 results)
	wikipedia dictionary	20,300,000 results	
		<u>dose</u>	

Google Suggest

WordLogic iKnowU keyboard

How to Construct an Input Text Predictor?

1. Given a language corpus

- Project Gutenberg (2.5GB, already on S3)
- English Language Wikipedia Articles (30GB, on S3 soon)
- 2. Construct an n-gram model of the corpus
 - An n-gram is a phrase with n words.
 - For example a set of 1,2,3,4,5-grams with counts:
 - this 1000
 - this is 500
 - this is a 125
 - this is a blue 60
 - this is a blue house 20

How to Construct an Input Text Predictor?

3. Build a statistical language model that contains the probability of a word appearing after a phrase

$$-\Pr(is|this) = \frac{Count(this is)}{Count(this)} = \frac{500}{1000} = 0.5$$
$$-\Pr(a|this is) = \frac{Count(this is a)}{Count(this is)} = \frac{125}{500} = 0.25$$

4. Store and index the words and their probabilities to use in an application

Discussions

• Your questions...

Upcoming Deadlines

• Unit 5:

Unit 5: Distributed Programming and Analytics Engines for the Cloud

Module 20: Distributed Analytics Engines for the Cloud: Pregel

Project 4

