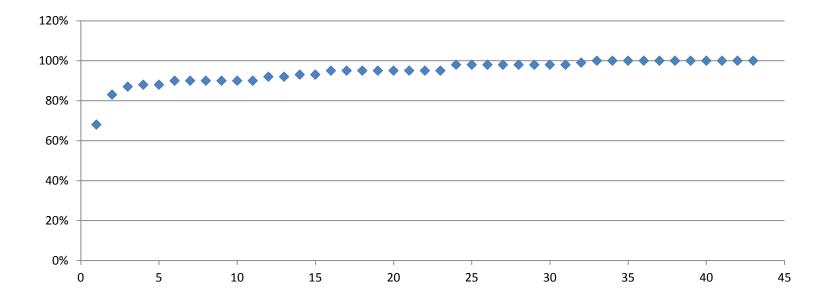
CS15-319 / 15-619 Cloud Computing

Recitation 13 April 16th, 2013


جامعۃ کارنیجی میلود فی قطر Carnegie Mellon University Qatar

Announcements

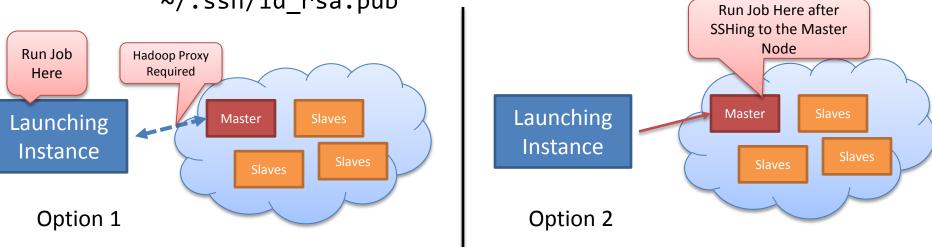
- Open up S3 location of hand ins:
 - Give access to your S3 bucket to:
 - public
 - <u>onlinecloudcomputingcourse@gmail.com</u>
 - You could lose credit or be penalized otherwise
 - See Piazza Post on how to open up your handin directory
- Encounter a general bug:
 - Post on Piazza
- Encounter a grading bug:
 - Post Privately on Piazza
- Post feedback on OLI

Unit 4 – Checkpoint Quiz

- 95% Students completed
- Average score is 94.5% (for students who completed)

New Modules

- Unit 5 Distributed Programming and Analytics Engines for the Cloud
 - Introduction to Distributed Programming for the Cloud
 - Distributed Analytics Engines for the Cloud: MapReduce
 - Introduction
 - The Programming Model
 - The Data Structure and Flow
 - Examples: WordCount, Sort and Sobel
 - The Computation and Architectural Models
 - Job and Task Scheduling
 - Fault-Tolerance
 - YARN: The New Hadoop MapReduce


Project 4, Part b

- Project 4, Part a
 - MapReduce
 - Project 4 Survey
- Project 4, Part b
 - Input Text Predictor: NGram Generation

Common Queries on MapReduce

- Running Hadoop Jobs on a Whirr Cluster
 - You can either run the job from the instance that launched the cluster
 - Need to start an SSH proxy to your cluster
 - Export \$HADOOP_CONF_DIR to ~/.whirr/<your-cluster-name>
 - Or you can run the Hadoop job from the Master node
 - SSH to the master node instance
 - List of instances is at ~/.whirr/<your-cluster-name>/instances
 - By default use ssh -i ~/.ssh/id_rsa and not ~/.ssh/id rsa.pub

Common Queries on MapReduce

- Job fails because Output Directory already exists:
 - HDFS is an immutable file system
 - Either specify a new output directory
 - Or delete the existing directory hadoop dfs -rmr
- Job fails because of lack of memory
 - Hadoop jobs require a lot of ram
 - Launch them on at least m1.small
 - You can modify the heap size in mapred-site.xml or pass it to your Hadoop job
 - mapred.child.java.opts=-Xmx1024m

MapReduce Tips and Tricks

- Use the Eclipse Java IDE
 - Code completion, options to package JARs etc.
 - MapReduce plugins (Hadoop, and third-party)
- Use byobu to keep your remote sessions alive
- Ensure that whirr has launched all the Hadoop processes properly
 - SSH to the master node to verify Hadoop is installed and run sample jobs to verify cluster is functioning
- Monitor your cluster through the web interfaces
 - <ec2-public-ip>:50030 and <ec2-public-ip>:50070
 - Remember to set the Security Groups to open those two ports for all IPs

Input Text Prediction

Construct an Input Text Predictor

	wiki		Advanced Sear
Advertising	wikipedia	250,000,000 results	Language Tool
	wikipedia encyclopedia	16,300,000 results	<u>e Slovenija</u>
	wiki answers	24,400,000 results	
	wikimapia	12,000,000 results	
	wikihow	1,780,000 results	
	wikiquote	3,280,000 results	
	wikispaces	7,800,000 results	
	wikitravel	2,270,000 results	
	wikimedia	55,700,000 results	
	wikipedia dictionary	20,300,000 results	
		dose	

Google Suggest

WordLogic iKnowU keyboard

How to Construct an Input Text Predictor?

1. Given a language corpus

- Project Gutenberg (2.5GB, already on S3)
- English Language Wikipedia Articles (30GB, on S3 soon)
- 2. Construct an n-gram model of the corpus
 - An n-gram is a phrase with n words.
 - For example a set of 1,2,3,4,5-grams with counts:
 - this 1000
 - this is 500
 - this is a 125
 - this is a blue 60
 - this is a blue house 20

How to Construct an Input Text Predictor?

 Build a statistical language model that contains the probability of a word appearing after a phrase

$$-\Pr(is|this) = \frac{Count(this is)}{Count(this)} = \frac{500}{1000} = 0.5$$
$$-\Pr(a|this is) = \frac{Count(this is a)}{Count(this is)} = \frac{125}{500} = 0.25$$

4. Store and index the words and their probabilities to use in an application

Discussions

• Your questions...

Upcoming Deadlines

• Unit 5:

UNIT 5: Distributed Programming and Analytics Engines for the Cloud

Module 18: Introduction to Distributed Programming for the Cloud

Module 19: Distributed Analytics Engines for the Cloud: MapReduce

F	Project 4				
ſ	Iodule 32: Input Text Predictor : Ngram Generation				
	NGram Generation	<u>Checkpoint</u>	Available Now Due 4/21/13 11:59 PM		