
Cloud Computing
CS 15-319

Virtualization- Part II
Lecture 18, March 26, 2012

Majd F. Sakr and Mohammad Hammoud

1

Today…

 Last session
 Apache Zookeeper and Virtualization Part I

 Today’s session
 Virtualization – Part II

 Announcement:
 Project update/discussion is due on Wed March, 28

2

Objectives

Discussion on Virtualization

Virtual machine
types

Partitioning and
Multiprocessor
virtualization

Resource
virtualization

Why virtualization,
and virtualization
properties

Virtualization,
para-
virtualization,
virtual machines
and hypervisors

Virtual machine
types

Last Session

Background: Computer System
Architectures

1

2
3 3

4 5 6

778888

9

10 10

11 11 12

13 14

Drivers

Application Programs

Libraries
OS

Memory
Manager Scheduler

Execution Hardware

System Interconnect (bus)

Memory Translation

Controllers Controllers

I/O Devices &
Networking Main Memory

Software

ISA

Hardware

Instruction Set
Architecture (ISA): 7 & 8

Application Binary
Interface (ABI): 3 & 7

Application
Programming
Interface (API): 2 & 7

Types of Virtual Machines
 As there is a process perspective and a system perspective of machines,

there are also process-level and system-level VMs

 Virtual machines can be of two types:

1. Process VM

• Capable of supporting an individual process

2. System VM

• Provides a complete system environment
• Supports an OS with potentially many types of processes

Process Virtual Machine

 Runtime is placed at the ABI interface
 Runtime emulates both user-level instructions and OS system calls

Guest

Runtime

Host

Application Process

Virtualizing Software

OS

Hardware

Application Process

Virtual Machine

System Virtual Machine

 VMM emulates the ISA used by one hardware platform to another, forming
a system VM

 A system VM is capable of executing a system software environment
developed for a different set of hardware

Guest

VMM

Host

Applications

Virtualizing Software

OS

Hardware

Applications

Virtual Machine

OS

Native and Hosted VM Systems

Applications

OS

Hardware

Guest
Applications

Guest OS

VMM

Hardware

Guest
Applications

Guest OS

VMM

Host OS

Hardware

Guest
Applications

Guest OS

VMM

Host OS

Hardware

Traditional
Uniprocessor
System

Native
VM System

User-mode
Hosted
VM System

Dual-mode
Hosted
VM System

Nonprivileged
modes

Privileged
modes

A Taxonomy
Process VMs System VMs

Same
ISA

Different
ISA

Same
ISA

Different
ISA

Multiprogrammed
Systems

Dynamic
Translators

Classic-System
VMs

Whole-System
VMs

Dynamic
Binary

Optimizers

HLL VMs Hosted
VMs

Co-designed
VMs

The Versatility of VMs

Java Application

Linux IA-32

Windows IA-32

Crusoe VLIW

JVM

VMWare

Code Morphing

Objectives

Discussion on Virtualization

Virtual machine
types

Partitioning and
Multiprocessor
virtualization

Resource
virtualization

Why virtualization,
and virtualization
properties

Virtualization,
para-
virtualization,
virtual machines
and hypervisors

Partitioning and
Multiprocessor
virtualization

Multiprocessor Systems
 Multiprocessor systems might have 1000s of processors connected to TBs

of memory and PBs of disk capacity

 Often there is a mismatch between the ideal number of processors an
application needs and the actual number of physical processors available

 It is more often the case that applications cannot exploit more than a
fraction of the processors available. The is mainly because of:

 Limitations in the parallelism available in the programs

 Limitations in the scalability of applications due to the overhead of
communication between processors

Partitioning
 The increasing availability of multiprocessor systems has led to the

examination of techniques that can help utilize them more effectively

 Techniques have been developed in which the multiprocessor system can
be partitioned into multiple partitions

 A partition is given a subset of the resources available on the system

 Hence, using partitioning, multiple applications can simultaneously exploit
the available resources of the system

 Partitioning can be achieved:
 Either in-space (referred to as physical partitioning)
 Or in-time (referred to as logical partitioning)

Physical Partitioning

P P

P P

M

I/O

D D

P P

P P

M

I/O

D D

P P

P P

M

I/O

D D

P P

P P

M

I/O

D D

P P

P P

M

I/O

D D

P P

P P

M

I/O

D D

Partition 1 Partition 2 Partition 3

 With physical partitioning, each partition is assigned resources that are
physically distinct from the resources used by the other partitions

Physical Partitioning
 Physical partitioning allows a partition to own its

resources physically

 It is not permissible for two partitions to share the resources of a
single system board

 Partitions are configured by a central control unit that receives
commands from the console of the system admin and provisions
hardware resources accordingly

 The number of partitions that can be supported in physically
partitioned systems is limited to the number of available
physical processors

Physical Partitioning- Advantages

 Physical partitioning provides:

 Failure Isolation: it ensures that in the event of a failure, only the part of
the physical system that houses the failing partition will be affected

 Better security isolation: Each partition is protected from the possibility
of intentional or unintentional denial-of-service attacks by
other partitions

 Better ability to meet system-level objectives (these result from
contracts between system owners and users of the system)

 Easier management of resources: no need of sophisticated algorithms
for scheduling and management of resources

Physical Partitioning- Disadvantages

 While physical partitioning has a number of attractive features, it has
some major disadvantages:

 System utilization: Physical partitioning is probably not the ideal
solution if system utilization is to be optimized

 It is often the case that each of the physical partitions
is underutilized

 Load balancing: with physical partitioning, dynamic workload
balancing becomes difficult to implement

Logical Partitioning
 With logical partitioning, partitions share some of the physical resources,

usually in a time-multiplexed manner

P P

P P

M

I/O

D D

M

I/O

D D

P P

P P

M

I/O

D D

P P

P P

I/O

D D

P P

P P

M

I/O

D D

P P

P P

M

I/O

D D

P P

P P

M

P P

P P

M

I/O

D D

M

I/O

D D

P P

P P

M

I/O

D D

P P

P P

I/O

D D

P P

P P

M

I/O

D D

P P

P P

M

I/O

D D

P P

P P

M

Logical Partitioning
 With logical partitioning it is permissible for two partitions to share

the resources of a single system board

 Logical partitioning makes it possible to partition an n-way system
into a system with more than n partitions, if so desired

 Logical partitioning is more flexible than physical partitioning but
needs additional mechanisms to provide safe and efficient way
of sharing resources

 Logical partitioning is usually done through a VMM or a hypervisor
and provides what is referred to as multiprocessor virtualization

Multiprocessor Virtualization
 A virtualized multiprocessor gives the appearance of a system that may or

may not reflect the exact configuration of the underlying physical system

Processor

Cache

Bus or Crossbar Switch

Memory I/O

Processor

Cache

Processor

Cache

Processor

Cache

Virtual Machine Monitor
M I/O

P P P

M I/O

P P P

M I/O

P P P

M I/O

P P P

Objectives

Discussion on Virtualization

Virtual machine
types

Partitioning and
Multiprocessor
virtualization

Resource
virtualization

Why virtualization,
and virtualization
properties

Virtualization,
para-
virtualization,
virtual machines
and hypervisors

Resource
virtualization

Resource Virtualization

22

Resource Virtualization

CPU Virtualization I/O VirtualizationI/O VirtualizationMemory VirtualizationMemory Virtualization

CPU Virtualization
 Interpretation and Binary Translation
 Virtualizable ISAs

CPU Virtualization
 Interpretation and Binary Translation
 Virtualizable ISAs

Instruction Set Architecture
 Typically, the architecture of a processor defines:

1. A set of storage resources (e.g., registers and memory)
2. A set of instructions that manipulate data held in storage resources

 The definition of the storage resources and the instructions that
manipulate data are documented in what is referred to as
Instruction Set Architecture (ISA)

 Two parts in the ISA are important in the definition of VMs:

1. User ISA: visible to user programs
2. System ISA: visible to supervisor software (e.g., OS)

Ways to Virtualize CPUs
 The key to virtualize a CPU lies in the execution of the guest

instructions, including both system-level and user-level instructions

 Virtualizing a CPU can be achieved in one of two ways:

1. Emulation: the only processor virtualization mechanism available
when the ISA of the guest is different from the ISA of the host

2. Direct native execution: possible only if the ISA of the host is
identical to the ISA of the guest

Emulation
 Emulation is the process of implementing the interface and

functionality of one system (or subsystem) on a system (or
subsystem) having different interface and functionality

 In other words, emulation allows a machine implementing one ISA
(the target), to reproduce the behavior of a software compiled for
another ISA (the source)

 Emulation can be carried out using:

1. Interpretation
2. Binary translation

Guest

Source ISA

Host

Target ISA

Emulated by

Basic Interpretation
 Interpretation involves a

4-step cycle (all in software):

1. Fetching a source instruction

2. Analyzing it

3. Performing the required operation

4. Then fetching the next
source instruction

Code

Data

•
•
•

Stack

Program Counter

Condition Codes

Reg 0

Reg 1

•
•

Reg n-1

Interpreter Code

Source Memory State Source Context Block

Decode-And-Dispatch
 A simple interpreter, referred to as decode-and-dispatch, operates by stepping

through the source program (instruction by instruction) reading and modifying
the source state

 Decode-and-dispatch is structured
around a central loop that decodes an
instruction and then dispatches it to an
interpretation routine

 It uses a switch statement to call a
number of routines that emulate
individual instructions

Source Code

Dispatch
Loop

Source Code Interpreter
Routines

Native
Execution

Decode-And-
Dispatch

Interpretation

Decode-And-Dispatch- Drawbacks

 The central dispatch loop of a decode-and-
dispatch interpreter contains a number of
branch instructions

 Indirect branch for the switch statement
 A branch to the interpreter routine
 A second register indirect branch to return from the

interpreter routine
 And a branch that terminates the loop

 These branches tend to degrade performance

Dispatch
Loop

Source Code Interpreter
Routines

Decode-And-
Dispatch

Interpretation

Indirect Threaded Interpretation
 To avoid some of the branches, a portion of the dispatch code can be

appended (threaded) to the end of each of the interpreter routines

 To locate interpreter routines,
a dispatch table and a jump
instruction can be used when
stepping through the
source program

 This scheme is referred to as
indirect threaded interpretation

Source Code Interpreter
Routines

Dispatch
Loop

Source Code Interpreter
Routines

Decode-And-
Dispatch

Interpretation

Indirect
Threaded

Interpretation

Indirect Threaded Interpretation-
Drawbacks

 The dispatch table causes an overhead when
looked up:

 It requires a memory access and a register
indirect branch

 An interpreter routine is invoked every time the same
instruction is encountered

 Thus, the process of examining the instruction and
extracting its various fields is always repeated

Source Code Interpreter
Routines

Indirect
Threaded

Interpretation

Predecoding (1)
 It would be more efficient to perform a repeated operation only once

 We can save away the
extracted information of an instruction
in an intermediate form

 The intermediate form can then be
simply reused whenever an instruction
is re-encountered for emulation

 However, a Target Program Counter
(TPC) will be needed to step
through the intermediate code

Lwz r1, 8(r2) //load word and zero
Add r3, r3, r1 //r3 = r3 +r1
Stw r3, 0(r4) //store word

PowerPC source code

07
1 2 08

08
3 1 03

37
3 4 00

(load word
and zero)

(add)

(store word)

PowerPC program in
predecoded intermediate form

Predecoding (2)
 To avoid a memory lookup whenever the dispatch table is accessed,

the opcode in the intermediate form can be replaced with the address
of the interpreter routine

 This leads to a scheme referred to as direct threaded interpretation

001048d0
1 2 08

00104800
3 1 03

00104910
3 4 00

(load word
and zero)

(add)

(store word)

07
1 2 08

08
3 1 03

37
3 4 00

(load word
and zero)

(add)

(store word)

Direct Threaded Interpretation
Source Code Interpreter

Routines

Predecoder

Intermediate CodeSource Code Interpreter
Routines

Indirect
Threaded

Interpretation

Direct Threaded
Interpretation

Direct Threaded Interpretation-
Drawbacks

 Direct threaded interpretation still suffers
from major drawbacks:

1. It limits portability because the
intermediate form is dependent on the
exact locations of the interpreter routines

2. The size of predecoded memory image is
proportional to the original source
memory image

3. All source instructions of the same type
are emulated with the same
interpretation routine

Source Code Interpreter
Routines

Predecoder

Intermediate Code

Binary Translation
 Performance can be significantly enhanced by mapping each

individual source binary instruction to its own customized target code

 This process of converting the source binary program into a target
binary program is referred to as binary translation

 Binary translation attempts to amortize the fetch and analysis
costs by:

1. Translating a block of source instructions to a block of target instructions
2. Caching the translated code for repeated use

Binary Translation
Source Code

Binary
Translator

Binary Translated Target
Code

Source Code Interpreter
Routines

Predecoder

Intermediate Code

Direct Threaded
Interpretation Binary

Translation

Static Binary Translation
 It is possible to binary translate a program in its entirety before

executing the program

 This approach is referred to as static binary translation

 However, in real code using conventional ISAs, especially CISC
ISAs, such a static approach can cause problems due to:

 Variable-length instructions
 Data interspersed with instructions
 Pads to align instructions
 Register indirect jumps

Inst. 1 Inst. 2
Inst. 3 jump

Reg. Data
Inst. 5 Inst. 6

Uncond. Branch Pad
Inst. 8

Data in instruction
stream

Pad for instruction
alignment

Jim indirect to ???

Dynamic Binary Translation

Source Program
Counter (SPC) to
Target Program
Counter (TPC)

Map Table

Emulation
Manager

Interpreter Translator

Miss

Hit

Code Cache

 A general solution is to translate the binary while the program is
operating on actual input data (i.e., dynamically) and interpret new
sections of code incrementally as the program reaches them

 This scheme is referred to as dynamic binary translation

Dynamic Binary Translation
Start
with
SPC

Look Up
SPCTPC

in Map Table

Hit in
Table

Use SPC to
Read Instructions

from Source
Memory Image

Interpret,

Translate, and
Place into Code

Cache

Write New
SPCTPC

Mapping into
Map Table

Branch to TPC
and Execute
Translated

Block

Get SPC for
Next Block

No

Yes

Next Class

Discussion on Virtualization

Virtual machine
types

Partitioning and
Multiprocessor
virtualization

Resource
virtualization

Why virtualization,
and virtualization
properties

Virtualization,
para-
virtualization,
virtual machines
and hypervisors

Resource
virtualization

