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Today…

 Last session
 Apache Zookeeper and Virtualization Part I

 Today’s session
 Virtualization – Part II

 Announcement:
 Project update/discussion is due on Wed March, 28
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Background: Computer System 
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Types of Virtual Machines
 As there is a process perspective and a system perspective of machines,

there are also process-level and system-level VMs

 Virtual machines can be of two types:

1. Process VM 

• Capable of supporting an individual process

2. System VM 

• Provides a complete system environment 
• Supports an OS with potentially many types of processes



Process Virtual Machine

 Runtime is placed at the ABI interface
 Runtime emulates both user-level instructions and OS system calls
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System Virtual Machine

 VMM emulates the ISA used by one hardware platform to another, forming
a system VM

 A system VM is capable of executing a system software environment
developed for a different set of hardware
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Native and Hosted VM Systems
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A Taxonomy
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The Versatility of VMs
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Multiprocessor Systems
 Multiprocessor systems might have 1000s of processors connected to TBs

of memory and PBs of disk capacity

 Often there is a mismatch between the ideal number of processors an
application needs and the actual number of physical processors available

 It is more often the case that applications cannot exploit more than a
fraction of the processors available. The is mainly because of:

 Limitations in the parallelism available in the programs

 Limitations in the scalability of applications due to the overhead of
communication between processors



Partitioning
 The increasing availability of multiprocessor systems has led to the

examination of techniques that can help utilize them more effectively

 Techniques have been developed in which the multiprocessor system can
be partitioned into multiple partitions

 A partition is given a subset of the resources available on the system

 Hence, using partitioning, multiple applications can simultaneously exploit
the available resources of the system

 Partitioning can be achieved:
 Either in-space (referred to as physical partitioning)
 Or in-time (referred to as logical partitioning)



Physical Partitioning
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 With physical partitioning, each partition is assigned resources that are
physically distinct from the resources used by the other partitions



Physical Partitioning
 Physical partitioning allows a partition to own its

resources physically

 It is not permissible for two partitions to share the resources of a
single system board

 Partitions are configured by a central control unit that receives
commands from the console of the system admin and provisions
hardware resources accordingly

 The number of partitions that can be supported in physically
partitioned systems is limited to the number of available
physical processors



Physical Partitioning- Advantages

 Physical partitioning provides:

 Failure Isolation: it ensures that in the event of a failure, only the part of
the physical system that houses the failing partition will be affected

 Better security isolation: Each partition is protected from the possibility
of intentional or unintentional denial-of-service attacks by
other partitions

 Better ability to meet system-level objectives (these result from
contracts between system owners and users of the system)

 Easier management of resources: no need of sophisticated algorithms
for scheduling and management of resources



Physical Partitioning- Disadvantages

 While physical partitioning has a number of attractive features, it has
some major disadvantages:

 System utilization: Physical partitioning is probably not the ideal
solution if system utilization is to be optimized

 It is often the case that each of the physical partitions
is underutilized

 Load balancing: with physical partitioning, dynamic workload
balancing becomes difficult to implement



Logical Partitioning
 With logical partitioning, partitions share some of the physical resources,

usually in a time-multiplexed manner
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Logical Partitioning
 With logical partitioning it is permissible for two partitions to share

the resources of a single system board

 Logical partitioning makes it possible to partition an n-way system
into a system with more than n partitions, if so desired

 Logical partitioning is more flexible than physical partitioning but
needs additional mechanisms to provide safe and efficient way
of sharing resources

 Logical partitioning is usually done through a VMM or a hypervisor
and provides what is referred to as multiprocessor virtualization



Multiprocessor Virtualization
 A virtualized multiprocessor gives the appearance of a system that may or

may not reflect the exact configuration of the underlying physical system
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Resource Virtualization
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CPU Virtualization
 Interpretation and Binary Translation
 Virtualizable ISAs



CPU Virtualization
 Interpretation and Binary Translation
 Virtualizable ISAs



Instruction Set Architecture
 Typically, the architecture of a processor defines:

1. A set of storage resources (e.g., registers and memory)
2. A set of instructions that manipulate data held in storage resources

 The definition of the storage resources and the instructions that
manipulate data are documented in what is referred to as
Instruction Set Architecture (ISA)

 Two parts in the ISA are important in the definition of VMs:

1. User ISA: visible to user programs
2. System ISA: visible to supervisor software (e.g., OS)



Ways to Virtualize CPUs
 The key to virtualize a CPU lies in the execution of the guest

instructions, including both system-level and user-level instructions

 Virtualizing a CPU can be achieved in one of two ways:

1. Emulation: the only processor virtualization mechanism available
when the ISA of the guest is different from the ISA of the host

2. Direct native execution: possible only if the ISA of the host is
identical to the ISA of the guest



Emulation
 Emulation is the process of implementing the interface and

functionality of one system (or subsystem) on a system (or
subsystem) having different interface and functionality

 In other words, emulation allows a machine implementing one ISA
(the target), to reproduce the behavior of a software compiled for
another ISA (the source)

 Emulation can be carried out using:

1. Interpretation
2. Binary translation
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Basic Interpretation
 Interpretation involves a

4-step cycle (all in software):

1. Fetching a source instruction

2. Analyzing it

3. Performing the required operation

4. Then fetching the next
source instruction
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Decode-And-Dispatch
 A simple interpreter, referred to as decode-and-dispatch, operates by stepping

through the source program (instruction by instruction) reading and modifying
the source state

 Decode-and-dispatch is structured 
around a central loop that decodes an 
instruction and then dispatches it to an 
interpretation routine

 It uses a switch statement to call a 
number of routines that emulate 
individual instructions
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Decode-And-Dispatch- Drawbacks

 The central dispatch loop of a decode-and-
dispatch interpreter contains a number of
branch instructions

 Indirect branch for the switch statement
 A branch to the interpreter routine
 A second register indirect branch to return from the

interpreter routine
 And a branch that terminates the loop

 These branches tend to degrade performance
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Indirect Threaded Interpretation
 To avoid some of the branches, a portion of the dispatch code can be

appended (threaded) to the end of each of the interpreter routines

 To locate interpreter routines, 
a dispatch table and a jump
instruction can be used when 
stepping through the 
source program 

 This scheme is referred to as 
indirect threaded interpretation
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Indirect Threaded Interpretation-
Drawbacks

 The dispatch table causes an overhead when
looked up:

 It requires a memory access and a register
indirect branch

 An interpreter routine is invoked every time the same
instruction is encountered

 Thus, the process of examining the instruction and
extracting its various fields is always repeated
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Predecoding (1)
 It would be more efficient to perform a repeated operation only once

 We can save away the 
extracted information of an instruction 
in an intermediate form

 The intermediate form can then be 
simply reused whenever an instruction 
is re-encountered for emulation

 However, a Target Program Counter 
(TPC) will be needed to step
through the intermediate code

Lwz r1, 8(r2)    //load word and zero
Add r3, r3, r1   //r3 = r3 +r1
Stw  r3, 0(r4)   //store word

PowerPC source code

07
1 2 08

08
3 1 03

37
3 4 00

(load word 
and zero)

(add)

(store word)

PowerPC program in 
predecoded intermediate form



Predecoding (2)
 To avoid a memory lookup whenever the dispatch table is accessed,

the opcode in the intermediate form can be replaced with the address
of the interpreter routine

 This leads to a scheme referred to as direct threaded interpretation

001048d0
1 2 08

00104800
3 1 03

00104910
3 4 00

(load word 
and zero)

(add)

(store word)

07
1 2 08

08
3 1 03

37
3 4 00

(load word 
and zero)

(add)

(store word)



Direct Threaded Interpretation
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Direct Threaded Interpretation-
Drawbacks

 Direct threaded interpretation still suffers 
from major drawbacks:

1. It limits portability because the 
intermediate form is dependent on the 
exact locations of the interpreter routines

2. The size of predecoded memory image is 
proportional to the original source 
memory image

3. All source instructions of the same type 
are emulated with the same 
interpretation routine
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Binary Translation
 Performance can be significantly enhanced by mapping each

individual source binary instruction to its own customized target code

 This process of converting the source binary program into a target
binary program is referred to as binary translation

 Binary translation attempts to amortize the fetch and analysis
costs by:

1. Translating a block of source instructions to a block of target instructions
2. Caching the translated code for repeated use



Binary Translation
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Static Binary Translation
 It is possible to binary translate a program in its entirety before

executing the program

 This approach is referred to as static binary translation

 However, in real code using conventional ISAs, especially CISC
ISAs, such a static approach can cause problems due to:

 Variable-length instructions
 Data interspersed with instructions
 Pads to align instructions
 Register indirect jumps

Inst. 1 Inst. 2
Inst. 3 jump

Reg. Data
Inst. 5 Inst. 6
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Inst. 8

Data in instruction 
stream

Pad for instruction
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Jim indirect to ???



Dynamic Binary Translation

Source Program 
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 A general solution is to translate the binary while the program is
operating on actual input data (i.e., dynamically) and interpret new
sections of code incrementally as the program reaches them

 This scheme is referred to as dynamic binary translation
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