
Cloud Computing
CS 15-319

Apache Pig, Hive and Zookeeper
Lecture 16, Mar 14, 2012

Majd F. Sakr, Mohammad Hammoud and
Suhail Rehman

1

Today…

 Last session
 BigTable Video Lecture and Discussion

 Today’s session
 Apache Pig, Hive and Zookeeper

 Announcement:
 Project update is due today

2

Going beyond MapReduce…
 MapReduce provides a simple abstraction to write distributed

programs running on large-scale systems on large amounts of data

 MapReduce is not suitable for everyone
 MapReduce abstraction is low-level and developers need to write custom

programs which are hard to maintain and reuse

 Sometimes user requirements may differ:
 Interactive processing of large log files
 Process big data using SQL syntax rather than Java programs
 Warehouse large amounts of data while enabling transactions and queries
 Write a custom distributed application but don’t want manage distributed

synchronization and co-ordination

Unstructured vs. Structured Data

 Structured Data
 Data with a corresponding

data model, such as a schema
 Fits well in relational tables
 E.g. Data in an RDBMS

 Unstructured Data
 No data model, schema
 Textual or bit-mapped

(pictures, audio, video etc.)
 E.g. Log Files, E-mails etc.

Email ID First
Name

Class Major

johndoe@cmu.edu “John” 2014 CS

janedoe@cmu.edu “Jane” 2013 IS

Relational Database Table

123.123.123.123 - - [26/Apr/2000:00:23:48 -0400] "GET
/pics/wpaper.gif HTTP/1.0" 200 6248
"http://www.jafsoft.com/asctortf/" "Mozilla/4.05 (Macintosh; I;
PPC)"

123.123.123.123 - - [26/Apr/2000:00:23:47 -0400] "GET
/asctortf/ HTTP/1.0" 200 8130
"http://search.netscape.com/Computers/Data_Formats/Docum
ent/Text/RTF" "Mozilla/4.05 (Macintosh; I; PPC)"

123.123.123.123 - - [26/Apr/2000:00:23:48 -0400] "GET
/pics/5star2000.gif HTTP/1.0" 200 4005
"http://www.jafsoft.com/asctortf/" "Mozilla/4.05 (Macintosh; I;
PPC)"

Apache Web Server Log
From: http://www.jafsoft.com/searchengines/log_sample.html

schema

Hadoop Spin-offs

5

Hadoop

Pig Hive

Zookeeper

Why Pig?
 Many ways of dealing with small amounts of data:
 Unstructured Logs on single machine: awk, sed, grep etc.
 Structured Data: SQL queries through an RDBMS

 How to process giga/tera/peta-bytes of unstructured data?
 Web crawls, log files, click streams
 Converting log files into database entries is tedious

 SQL syntax may not be ideal
 Strict syntax, not suited for scripting–centric programmers

 MapReduce is tedious!
 Rigid data flow – Map and Reduce
 Custom code for common operations such as joins – and difficult!
 Reuse is difficult

Apache Pig
 Pig latin language
 High-level language to express operations on data
 User specifies the operations on the data as a query execution plan in

Pig Latin

 Apache Pig framework
 Interprets and executes pig latin programs into MapReduce jobs
 Grunt – a command line interface to pig
 Pig Pen – debugging environment

Pig Use Cases
 Ad-hoc analysis of unstructured data
 Web crawls, log files, click streams

 Pig is an excellent ETL tool
 “Extract, Transform, Load” for pre-processing data before loading it into

a data warehouse

 Rapid Prototyping for Analytics
 You can experiment with large data sets before you write custom

applications

Design Goals of Pig Latin
 Dataflow language

 Operations are expressed as a sequence of steps, where each step
performs only a single high-level data transformation

 Unlike SQL where the query should encapsulate most of the operation
required

 Quick start and interoperability
 Quickly load flat files and text files, output can also be tailored to user needs
 Schemas are optional, i.e., fields can be referred to by position ($1, $4 etc.)

 Fully nested data model
 A field can be of any data type, a data type can encapsulate any other data

type

 UDFs as first-class citizens
 User defined functions can take in any data type and return any data type
 Unlike SQL which restricts function parameters and return types

Pig Latin – Data Types
 Data types
 Atom: Simple atomic value
 Tuple: A tuple is a sequence of fields, each can be any of the data types
 Bag: A bag is a collection of tuples
 Map: A collection of data items that is associated with a dedicated atom

Atom Tuple Bag Map

Pig Latin – Expressions

Expression Type Example Value for tuple t
Constant ‘bob’ Independent of t

Field by position $0

Field by name f3

Projection f2,$0

Map Lookup f3#’age’

Function Evaluation SUM(f2.$1)

Conditional Expression F3#’age’>18?
‘adult’:’minor’

Flattening FLATTEN(f2)

f1 f2 f3

Pig Latin – Commands / Operators (1)
 LOAD – Specify input data

 queries = LOAD ‘query_log.txt’ USING myLoad()

AS (userId, querystring, timestamp);
• myLoad() is a user defined function (UDF)

alice,lakers,1
bob,iPod,3

 FOREACH – Per-tuple processing
 expanded_queries = FOREACH queries GENERATE userId,

expandQuery(queryString);

Text File queries
(userId, queryString, timestamp)

LOAD

queries
(userId, queryString, timestamp)

FOREACH queries GENERATE userId,
expandQuery(queryString);

Pig Latin – Commands / Operators (2)

 FLATTEN – Remove nested data in tuples

 FILTER – Discarding unwanted data

FLATTEN(expandedQueries);

FILTER expandedQueries BY
userId == ‘alice’

Pig Latin – Commands / Operators (3)

 COGROUP – Getting related data together
 grouped_data = COGROUP results BY queryString,

revenue BY queryString;

results:
(queryString, url, rank)

revenue:
(queryString, adSlot, amount)

COGROUP
grouped_data:

(group, results, revenue)

GROUP is a special case of COGROUP

Pig Latin – Commands / Operators (4)

 JOIN – Cross product of two tables
 join_result = JOIN results BY queryString,

revenue BY queryString;
results:

(queryString, url, rank)

revenue:
(queryString, adSlot, amount)

JOIN join_results:
(queryString, url, rank, adSlot, revenue)

JOIN is the same as COGROUP + FLATTEN

Pig Latin – Commands / Operators (5)

 STORE – Create output
 final_result = STORE join_results INTO ‘myoutput’,

USING myStore();

lakers, nba.com, 1, top, 50
lakers, nba.com, 1, side, 20
lakers, espn.com, 2, top, 50
lakers, espn.com, 2, side, 20
kings, nhl.com, 1, top, 30
kings, nhl.com, 1, side, 10
kings, nba.com, 2, top, 30
kings, nba.com, 2, side, 10

Text File

myoutput

STORE

join_results:
(queryString, url, rank, adSlot, revenue)

Architecture of Pig

Grunt
(CLI)

PigPen

Pig
Driver

Hadoop
Cluster

Execution on Hadoop

MapReduce Plan

Physical to MapReduce Plan Translator

Physical Plan

Logical to Physical Translator

Logical Plan

Query Parser Semantic Checking Logical Optimizer

Interpretation of a Pig Program
 The Pig interpreter parses each command and builds a logical plan

for each bag created by the user.
 The logical plan is converted to a physical plan
 Pig then creates an execution plan of the physical plan with maps

and reduces
 Execution starts only after output is requested– lazy compilation

LOAD FILTER GROUP COGROUP COGROUP

LOAD

map1 reduce1

mapi

reducei mapi+1 reducei+1

Hadoop Spin-offs

19

Hadoop

Pig Hive

Zookeeper

Motivation for Hive
 Organizations that have been using SQL-based RDBMS for storage

 Oracle, MSSQL, MySQL etc.

 The RDBMS has grown beyond what one server can handle
 Storage can be expanded to a limit
 Processing of Queries is limited by the computational power of a single server

 Traditional business analysts with SQL experience
 May not be proficient at writing Java programs for MapReduce
 Require SQL interface to run queries on TBs of data

Apache Hive
 Hive is a data warehouse infrastructure built on top of Hadoop that

can compile SQL-style queries into MapReduce jobs and run these
jobs on a Hadoop cluster
 MapReduce for execution
 HDFS for storage

 Key principles of Hive’s design:
 SQL Syntax familiar to data analysts
 Data that does not fit traditional RDBMS systems
 To process terabytes and petabytes of data
 Scalability and Performance

Hive Use Cases
 Large-scale data processing with SQL-style syntax:

Predictive Modeling &
Hypothesis Testing

Customer Facing Business
Intelligence

Document Indexing Text Mining & Data
Analysis

Hive Components
 HiveQL

 Subset of SQL with extensions for loading and storing

 Hive Services
 The Hive Driver – compiler, executor engine
 Web Interface to Hive
 Hive Hadoop Interface to the JobTracker and NameNode

 Hive Client Connectors
 For existing Thrift, JDBC and ODBC applications

Hive Data Model
 Tables

 Similar to Tables in RDBMS
 Each Table is a unique directory in HDFS

 Partitions
 Partitions determine the distribution of data within a table.
 Each partition is a sub-directory of the main directory in HDFS

 Buckets
 Partitions can be further divided into buckets.
 Each bucket is stored as a file in the directory

1 2

HDFS /wh/t
HDFS Path

1 2

HDFS /wh/t/2
HDFS Path

1 2

HDFS /wh/t/2/part-0000.part
HDFS Path

HiveQL Commands

 Data Definition Language
 Used to describe, view and alter tables.
 For E.g. CREATE TABLE and DROP TABLE commands with extensions to

define file formats, partitioning and bucketing information

 Data Manipulation Language
 Used to load data from external tables and insert rows using the LOAD and

INSERT commands

 Query Statements
 SELECT
 JOIN
 UNION
 etc.

User-Defined Functions in Hive
 Four Types
 User Defined Functions (UDF)

 Perform tasks such as Substr, Trim etc. on data elements

 User Defined Aggregation Functions (UDAF)
 Performed on Columns
 Sum, Average, Max, Min… etc.

 User Defined Table-Generating Functions (UDTF)
 Outputs a new table
 Explode is an example – similar to FLATTEN() in Pig.

 Custom MapReduce scripts
 The MR scripts must read rows from standard output
 Write rows to standard input.

Architecture of Hive

Traditional
DB

Hadoop
Cluster

CLI

Hive
Server

Hive Web
Interface

Driver
(Compiler,
Optimizer
Executor)

Metastore

HDFS
Client

JobClient

Hive Clients Hive Services Compute and
Storage Back-ends

Thrift
Application

Hive Thrift
Client

JDBC
Application

Hive JDBC
Client

ODBC
Application

Hive
ODBC
Client

Data Analyst /
SQL Programmer

Compilation of Hive Programs

Execution in Hadoop

Physical Plan Generator

Logical plan is converted into a physical plan, which is a DAG of Map-Reduce jobs.

Optimizer

Multiple passes over the logical plan and rewrites it Combines Multiple joins, reduces the number of MR
jobs, etc.

Logical Plan Generator

Converts the internal query representation into a logical execution plan

Semantic Analyzer
Retrieves the schema and verifies the validity of the

query. Transforms the query into an internal representation

Parser

Parses the query string into a parse tree representation

Hadoop

Pig Hive

Zookeeper

Hadoop Spin-offs

29

Why ZooKeeper?
 Writing distributed applications is hard

 Need to deal with synchronization, concurrency , naming, consensus,
configuration etc.

 Well known algorithms exist for each of these problems
 But programmers have to re-implement them for each distributed application they

write.

 Master-slave architecture is popular for distributed applications
 But how do you deal with master failures?
 Single master can quickly become the performance bottleneck for many

distributed applications.

What is Apache ZooKeeper?
 ZooKeeper is a distributed co-ordination service for large-scale

distributed systems

 ZooKeeper allows application developers to build the following
systems for their distributed application:
 Naming
 Configuration
 Synchronization
 Organization
 Heartbeat systems
 Democracy / Leader election

Zookeeper Ensemble

ZooKeeper Architecture

Server Server Server Server Server
Leader

Client Client Client Client Client Client Client Client

Client Interactions with Zookeeper

 Clients must have the list of all the zookeeper servers in the
ensemble
 Clients will attempt to connect to the next server in the ensemble if one fails

 Once a client connects to a server, it creates a new session
 The application can set the session timeout value
 Session is kept alive through the heartbeat mechanism.
 Failure events are automatically handled and watch events are delivered to the

client on reconnection.

Zookeeper Data Model
 Similar to a filesystem

 Hierarchical layout to denote a
membership list.

 Each node is known as a znode
 znodes can be ephemeral or persistent
 An ephemeral znode exists as long as

the session of the client who created it.
 Ephemeral znodes cannot have

children.
 Sequential znodes are persistent and

have a sequence number attached.
 For e.g. if a second goat znode is

declared under /zoo, it will be
/zoo/goat2 etc.

 Znodes can store data and have an
associated ACL
 Size limit of 1 MB per znode
 Sanity check as its more than enough

to store configuration/state information

/zoo

/

/zoo/
duck

/zoo/
goat

/zoo/
cow

ZooKeeper API
Operation Description

create Creates a znode

delete Deletes a znode (znode should not have any children)

exists Tests if a znode exists and retrieves its metadata

getACL, setACL Gets/sets ACL for a znode

getChildren Gets a list of children for a znode

getData, setData Gets and sets data for a znode

sync Synchronizes a client’s view of a znode with ZooKeeper

Reads, Writes and Watches
 Reads can be collected from any server.
 Write requests are always forwarded to the leader which commits

the write to a majority of servers atomically

 A watch can be optionally set on a znode after a read operation to
monitor if it has been deleted or changed.
 A watch is triggered when there is an update to a specific znode and it can be

used to notify clients that have read the znode.

Zookeeper Ensemble

Server Server Server
Leader

Client Client Client Client Client Client

Zookeeper Protocol : Zab
 Zab ensures zookeeper can keep its promises to clients. It is a two

phase protocol
 Phase 1: Leader Election

 All the members of the ensemble elect a distinguished member, called the leader
and other members are designated as followers.

 The election is declared complete when a majority (quorum) of followers have
synchronized the state with the leader

 Phase 2: Atomic Broadcast
 Write requests are always forwarded to the leader
 The update is broadcast to all the followers.
 The leader then commits the update when a majority of followers have persisted

the change
 The writes thus happen atomically in accordance with a two-phase commit (2PC)

protocol

Zookeeper guarantees…
 That every modification to the znode tree is replicated to a majority of

the ensemble

 That fault tolerance is achieved
 As long as a majority of the nodes in the ensemble are active.
 Ensembles are typically configured to be an odd number.

 That every update is sequentially consistent

 That all updates to the znode state are atomic

 That every client sees only a single system image

 That updates are durable and persist, in spite of server failures.

 That client’s view is timely and is not out-of-date

Creating Higher-level Constructs
with Zookeeper

 Barrier
 Creating a barrier for distributed clients is easy.
 Designate a barrier node, and clients check if it exists.

/bClient Client
exists()

true
Wait for barrier
znode deletion

watch event

/b

exists()

false
Proceed

 Queue
 create() sequential znodes under a parent to designate queue items.
 Queue can be processed using a getchildren() call on the /q item. A watch

can notify client of new items on the queue

/qClient
create(/q/i-)

/q/i-1 /q/i-n/q/i-2

Next Class

Virtualization

